《遗传算法与模拟退火融合在TSP与车间作业调度中的应用》 在解决复杂的优化问题时,传统的数学方法往往力有未逮,而计算智能领域的算法如遗传算法(Genetic Algorithm, GA)和模拟退火(Simulated Annealing, SA)则展现出了强大的潜力。本文将探讨如何将这两种算法融合,应用于旅行商问题(Traveling Salesman Problem, TSP)和车间作业调度问题(Job Shop Scheduling Problem, JSSP),并介绍相关代码实现。 一、遗传算法 遗传算法是受生物进化理论启发的一种全局优化算法。它通过模拟种群的自然选择、基因重组和突变等过程,逐步演化出更优的解决方案。在TSP中,每个个体代表一种旅行路径,通过交叉、变异操作更新种群,寻找最短的旅行路线。遗传算法的优势在于其全局搜索能力,能跳出局部最优解,但可能会陷入早熟。 二、模拟退火 模拟退火算法源自固体物理的退火过程,其核心思想是在接受较差解时引入一定的概率,从而避免过早收敛。在解决JSSP时,SA能有效处理约束条件下的优化问题,寻找最小化完成时间的作业调度方案。SA的优势在于其动态调整接受解的策略,有助于找到全局最优。 三、融合算法 遗传算法和模拟退火的融合可以结合两者的优点,提高解决问题的效率和精度。在融合过程中,可以先用遗传算法快速搜索大范围空间,再用模拟退火细化搜索,对遗传算法得到的近似解进行优化。这种混合策略在处理复杂优化问题时,通常能获得更好的结果。 四、TSP与JSSP应用 1. 旅行商问题:TSP是一个经典的组合优化问题,目标是找到访问多个城市的最短路径,且每个城市仅访问一次,最后返回起点。遗传算法和模拟退火的融合可以有效地寻找接近最优的解决方案。 2. 车间作业调度问题:JSSP涉及多个工序和机器,每个作业需按特定顺序在多台机器上完成,目标是最小化总的完成时间。融合算法的应用可以解决复杂的约束条件,找到最佳的作业顺序。 五、代码实现 “算法集合”中的代码实现了上述理论,包含了遗传算法和模拟退火的实现,以及它们的融合版本。通过运行这些代码,可以直观地理解算法的运作机制,并在实际问题中进行应用。 总结,遗传算法和模拟退火作为计算智能的重要工具,具有广泛的应用前景。通过它们的融合,我们可以解决更复杂的优化问题,如TSP和JSSP。理解并掌握这些算法的原理与实现,对于提升问题解决能力具有重要意义。
2024-09-10 17:06:21 790KB 遗传算法 模拟退火
1
ACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集
2024-07-01 14:37:28 11.48MB 神经网络 模拟退火算法
1
多配送中心选址问题可以描述为:某个地区内有若干个需求点,已知各个需求点的需求量,现欲在该区域内若干个配送中心备选点中选择一部分,建立配送中心,以满足该地区需求点的需求,并使得包括固定费用、运输费用以及存储费用在内的总费用最少。 为了简化问题,我们先做出如下假设: 1)仅在给定的配送中心备选点中选择一部分建立配送中心。 2)运输费用与运量成正比。 3)配送中心容量足够大,可以满足所有需求。 4)各需求点的需求量已知。 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其冷却。加温时,固体内部粒子随温升变为无序状,内能增大;而冷却时粒子渐趋有序,在每个温度上都达到平衡态,最后在常温时达到基态,内能减为最小。
2024-04-11 10:43:43 30KB matlab 模拟退火算法 中心选址问题
1
在超高电压等级情况下,输电工程引起的电磁环境问题备受关注。在模拟电荷法的基础上提出分区域算法,将超高压输电线路在复杂场景下的计算区域划分为2个子区域,并在虚拟边界面设置模拟电荷作为子区域间的耦合条件。通过对双回输电线路下存在建筑物时的工频电场进行实例计算,结果验证了该算法的正确性和有效性,由效率对比可知分区域算法在保证精度的前提下能有效提高计算速度并减少计算内存。利用分区域算法对输电线路下存在树状物时的工频电场进行计算,计算结果与理论分析结果一致。可见,分区域算法在复杂场景下超高压输电线路的电场计算中有较好的应用前景。
1
介绍了几种典型的进程调度算法, 并用C 语言程序模拟了各个进程调度算法 的执行情况, 最后通过一组实验数据对各种进程调度算法的性能进行了比较。
2023-04-07 09:59:19 273KB 进程调度
1
针对心肌梗死(myocardial infarction,MI)12导联高频心电信号(high frequency electrocardiogram,HF-ECG)全局特征聚类问题,提出了一种计算机自动聚类算法。收集MIT-BIH标准心电数据库中的健康心电信号、早期心肌梗死心电信号、急性期心肌梗死心电信号、近期心肌梗死心电信号进行处理。应用二维主分量判别法(two dimensional principal component analysis,2D-PCA)对12导联HF-ECG进行融合特征提取,并应用基于均方差属性加权的遗传模拟退火K-means改进聚类算法。与常规K-means聚类算法相比,特征值更加简单直观,所提算法平均分类精度有较大提高,能对12导联HF-ECG进行更有效的聚类。
1
页面置换算法模拟程序报告书(内含代码+小结等)
2022-12-06 23:09:55 109KB 页面置换算法模拟程序
1
动态规划,分治算法,概率算法,模拟退火算法,搜索算法,贪婪算法,网上matlab,遗传算法,组合算法.
1
缓存模拟器 这使用LRU(最近最少使用)替换算法模拟L1级缓存。 c-sim [-h] [缓存大小] [关联性] [块大小] [写入策略] [跟踪文件] 在哪里: 是缓存的总大小。 这应该是2的幂。而且, =集数××<块大小>应该总是正确的。 <关联性>是以下之一:direct-模拟直接映射的缓存,assoc-模拟完全关联的缓存,assoc:n-模拟n-方式的关联缓存。 n应该是2的幂。 是2的幂的整数,用于指定缓存块的大小。 是以下之一:wt-模拟直写式高速缓存,wb-模拟回写式高速缓存。 是包含内存访问跟踪的文本文件的名称。 示例跟踪:(第一个是写操作,第二个是读操作。) 0x37c852:W 0xbfd4b18c 0x37cfff:R
2022-11-24 22:02:37 6KB C
1
进程调度算法模拟 ① 进程数不少于5个; ② 进程调度算法任选; 可以用动态优先数加时间片轮转法实现进程调度,每运行一个时间片优先数减3; ③ 用C语言编程; ④ 程序运行时显示进程调度过程。
2022-11-19 16:37:48 125KB 进程调度
1