1. Matlab实现粒子群优化算法优化BP神经网络的数据分类预测(完整源码和数据) 2. 多变量输入,单变量输出(类别),数据分类预测 3. 评价指标包括:准确率 和 混淆矩阵 4. 包括拟合效果图 和 混淆矩阵 5. Excel数据,要求 Matlab 2018B及以上版本
2024-04-15 09:42:39 74KB 机器学习 神经网络 粒子群算法 Matlab
1
1. Matlab实现粒子群优化算法优化BP神经网络的数据回归预测(完整源码和数据) 2. 多变量输入,单变量输出,数据回归预测 3. 评价指标包括:R2、MAE、MSE、RMSE 4. 包括拟合效果图和散点图 5. Excel数据,暂无版本限制,推荐2018B及以上版本
2024-04-08 19:42:21 15KB 机器学习 神经网络 粒子群算法 Matlab
1
使用PSO优化RBF神经网络的主要参数中心值c, 宽度σ以及连接权值w。然后将影响输出响应值的多个特征因素作为PSO-RBF神经网络模型的输入神经元, 输出响应值作为输出神经元进行预测测试。
2022-11-22 16:30:34 4KB 径向基神经网络 粒子群算法
1
以提高预测软件老化趋势为应用背景,提出一种新型粒子群退火算法(New Particle Swarm Annealing Algorithm,NPSOSA)优化BP神经网络的权值和阈值,继而构建NPSOSA-BP神经网络预测模型.实验通过搭建软件老化测试平台,收集所需的老化数据并进行仿真训练.实验结果表明,NPSOSA-BP神经网络模型相比于传统粒子群算法(PSO)、传统粒子群退火算法(PSOSA)优化的BP神经网络模型提高了预测精度和适用度,在该应用领域验证了本文方法的有效性.
1
为解决BP神经网络拟合非线性函数的预测结果误差较大问题,笔者将标准粒子群算法进行改进,形成基于免疫接种的粒子群算法(IPSO);然后将该算法与BP神经网络理论相结合,实现基于IPSO算法优化的BP神经网络非线性函数拟合算法。新的拟合算法首先确定BP神经网络结构,然后用IPSO算法优化初始权值和阈值,最后进行BP神经网络预测。数值实验表明,本文提出的IPSO算法提高了BP神经网络的拟合能力,减小了拟合误差,提高了拟合精度。
1
此程序为一个欠驱动机械臂的平衡控制,该程序包括对BP神经网络的改进,效果挺好!
2021-09-02 22:27:45 100KB 神经网络,粒子群算法
1
为克服BP神经网络算法在故障诊断应用中的缺点,提出了粒子群优化BP神经网络的方法,并在此基础上优化BP神经网络的结构来提高准确率。最后,通过对变压器故障诊断在Matlab中的仿真结果,验证了此方法有较高的准确率和较快的收敛速度。
1
Matlab粒子群算法遗传算法优化RBF径向基神经网络-粒子群算法、遗传算法优化RBF径向基神经网络.rar 粒子群算法、遗传算法优化RBF径向基神经网络
2019-12-21 21:40:56 4KB matlab
1