西门子博途1200 PLC的V/N积分法卷径计算功能块的SCL源代码及其在收放卷设备中的应用。文章首先解释了卷径计算的重要性和传统方法的局限性,然后深入探讨了基于电机运行参数积分推导的新方法。文中展示了功能块的接口定义、执行方法中的积分逻辑以及针对实际应用中的常见问题(如零漂风险、角度积分漂移等)所采取的技术解决方案。此外,还提供了具体的调试经验和应用实例,如在薄膜分切机上的成功应用。 适合人群:自动化领域的工程师和技术人员,特别是对PLC编程和收放卷设备有研究兴趣的专业人士。 使用场景及目标:适用于需要精确卷径计算的工业生产线,尤其是那些涉及连续材料处理的场合。主要目标是提高卷径测量精度,优化生产流程,减少因卷径误判导致的问题。 其他说明:本文不仅提供了理论分析,还包括了具体实现细节和调试技巧,有助于读者更好地理解和应用这一技术。
2025-08-12 21:04:19 463KB
1
内容概要:本文详细探讨了连续导通模式(CCM)和临界导通模式(CRM)下单相有源功率因数校正(PFC)Boost电路的仿真方法及其双闭环PI控制策略。文中介绍了三种不同的控制方式:CCM模式下的电压电流双闭环PI控制、CCM模式下的电压外环PI电流内环滞环控制以及CRM模式下的电压外环PI内环电流比较控制。每种控制方式都提供了相应的Matlab/Simulink建模思路和关键代码片段,帮助读者理解各控制策略的工作原理和实现细节。 适合人群:从事电力电子领域的研究人员和技术人员,特别是对功率因数校正技术和仿真工具感兴趣的读者。 使用场景及目标:适用于需要深入了解PFC电路控制策略的研究人员和技术人员,旨在通过仿真实验对比不同控制方式的性能特点,为实际工程应用提供理论支持和技术指导。 其他说明:文章不仅提供了详细的理论解释,还附有具体的代码示例,便于读者动手实践并验证所学知识。
2025-08-12 15:38:34 617KB 电力电子 Boost电路
1
5 HUAWEI HiCar UX 开放能力 5.1 设计概述 设计目标:保障用户驾驶安全,提供便捷舒适的操作及智能贴心的服务。 设计要素:  安全便捷:信息易读,易搜索;内容界面布局及热区,易操作;减少注意力干 扰,避免分心。  自然舒适:界面简洁一致性,易学,易用;高效,自然多模态操作;无感设备连 接和共享。  智能贴心:智能管理内容和消息通知;功能克制,精简复杂特性。 图5-1 HUAWEI HiCar 设计要素 5.2 人因研究与视觉设计 基于对用户观测和操作模型的研究分析,人们常用的手机使用距离为 30cm,而驾舱的 使用距离为 70cm,为保障用户在驾舱环境下的使用的安全和交互易用性,HUAWEI HiCar 对车载人机交互要素进行适配以满足复杂驾驶状态的使用需求。 界面元素大小 结合用户观测模型及车辆的使用环境(运动和颠簸)的因素,为保障用户的易读性和 易操作性,车载系统上各元素的物理视觉至少需要达到手机上的 2 倍。
2025-08-12 15:26:42 2.01MB 车联网
1
根据给定的文件信息,我们可以提炼出以下知识点: 标题中提及的“热阻网络模型”是一种热分析工具,用于研究热在固体材料中的传导。在电子学和微电子学领域,热阻网络模型常被用来模拟集成电路(IC)中的热行为,特别是在三维集成电路(3D IC)中,热管理变得尤为重要。热阻网络模型将复杂的热传导系统简化为由热阻元件构成的网络,通过这些热阻元件之间的相互作用来分析热流的分布情况。 文件描述中提到的“高导热通路”(High Thermal Conductivity Path,简称HTCP)是3D IC的关键组成部分,它由热TSV(Through-Silicon Via,即贯穿硅通孔)、热线以及微凸点构成。热TSV是一种垂直贯穿整个硅晶片的导电孔,它能够显著提高芯片间的连接密度,并且在热传递中扮演重要角色。热线则是在层间提供热导通路径的导线,而微凸点则用于芯片间的互连。 描述中还提到了3DIC的热管理系统,它主要可以分为层内热点和层间热点两个子系统。层内热点指的是由有源器件及其互连层构成的热点,而层间热点则是指通过焊球导入高热流密度造成的“赝热点”。这些热点的热分析对热管理至关重要,尤其是在层间热点中,由于层间介质的低热导率,热量传递到下层时会出现严重的热问题。 在内容部分,文章的作者皮宇丹、金玉丰、王玮在文章中提出了一种基于热阻网络的简化计算方法,用于计算高导热通路中的热阻。这种计算方法特别针对了T-TSV和T-wire的热特性,通过将各个部分的热阻网络模型单独计算后,再整合这些结果来分析整个高导热通路的热特性。文章最后通过实际仿真结果与简化计算结果的对比,验证了该计算方法具有不超过3%的计算偏差,证明了其高精确度。 这种简化计算方法在微电子学领域有着重要的应用价值。由于3D IC集成度高,热管理复杂,传统的热分析方法往往过于复杂和耗时,而简化计算方法能够提供快速且精确的热分析结果,对于IC的设计和优化具有重要帮助。这种计算方法的提出,有助于推动三维集成电路技术的发展,并可能对微电子封装的热分析标准产生影响。 文章还提到了中图分类号TN305.94,该分类号属于微电子学领域,表明该篇论文的研究内容主要聚焦于微电子学中热管理相关的技术细节。关键词部分指出了本文研究的主要焦点,包括微电子学、高导热通路、热阻网络、TSV等。 热阻网络模型在高导热通路热分析中的应用研究,对于理解三维集成电路的热行为和改善其热管理具有深远的意义。通过热阻网络模型的简化计算,不仅可以快速评估3D IC设计中的热特性,还可以为热相关的可靠性分析和散热设计提供理论依据。
2025-08-12 11:24:45 1.2MB 微电子学
1
在分析大型结构机构在轨运动特性测试技术的研究现状时,首先要明确该技术的核心价值和应用背景。卫星的在轨运行状况对空间任务的成功至关重要,而空间机构在轨期间所面临的极端环境如温度变化、辐射等因素会对结构造成影响,因此需要实时监测其结构位姿精度和形变,以保障整个卫星系统的正常、有效、长期稳定运行。 卫星在轨运行时,空间结构机构在太空环境中会受到温度载荷的影响,这些影响会导致机构产生变形,进而影响到其空间位姿精度。为了克服这一问题,需要采用高精度的测量技术,将测量到的数据反馈给卫星的控制系统,以便实时调整和修正机构的空间位姿。这不仅涉及高精度的测量技术,还涉及到实时数据处理和控制系统的设计。 目前,随着各种高分辨率成像卫星的出现,对结构尺寸精度和在轨稳定性提出了更高要求。这就需要测试技术不仅能够适应地面的严格条件,更要能在恶劣的太空环境中进行稳定和精确的测量。在轨运动特性测试技术因此成为了航天领域中的关键技术之一,对提高航天器的在轨性能与寿命有着重要的意义。 就当前的发展情况来看,国内外在该技术领域中的研究正在进行中。国外一些研究机构和公司已经在进行相关技术的开发与应用,特别是在卫星的健康监控和维护方面。而国内的研究起步较晚,但已展现出迅猛发展的势头,开始重视在轨测试技术的自主研发。 在测试技术方面,研究主要集中在以下几个方面: 1. 测量方法:研究适合太空环境的高精度、高稳定性的测量方法。这包括但不限于光学测量、无线传感器网络、激光跟踪测量等技术。这些技术必须能够在极端的温度变化、微重力条件下稳定工作,并能提供准确的测量数据。 2. 数据处理与反馈:采集到的数据需要通过复杂的算法进行处理,以确保高精度的测量结果。同时,需要有实时的反馈机制,将处理后的数据迅速反馈给卫星控制系统,以便进行实时调整。 3. 在轨实验与验证:为确保地面模拟实验的可靠性,需要在真实的空间环境中进行在轨实验和验证。这涉及到轨道力学、热力学和材料科学等多学科的交叉应用。 4. 结构设计:在结构设计阶段就需要考虑到在轨运动特性测试技术的需求,以实现更高效的测试和更少的资源消耗。 5. 故障预测和健康管理:通过长期积累的在轨测试数据,可以对卫星机构的健康状态进行预测,并进行有效的健康管理。 6. 标准化和规范制定:为了推动技术的成熟与应用,需要制定相关的测试标准和规范,以统一测试方法和数据处理方式,保证不同卫星间测试数据的可比性。 7. 模拟与仿真:在真实的在轨测试之前,通过地面仿真模拟不同空间环境和情况,对测试技术进行验证和优化。 虽然目前该技术在国内外都取得了一定的进展,但仍然面临许多挑战,如如何提高测量精度、如何应对极端环境的挑战、如何实现快速准确的数据反馈等。未来研究工作的重点将在于解决这些技术难题,同时不断推进在轨测试技术的理论创新和应用拓展,使其更好地服务于卫星在轨运行的安全性和效能。
2025-08-12 10:51:51 781KB 首发论文
1
4kW永磁发电机:Maxwell与Simplorer联合仿真性能分析与波形研究,4kW永磁发电机Maxwell+Simplorer联合仿真性能及其波形 ,4kW永磁发电机; Maxwell联合仿真; Simplorer联合仿真; 波形性能;,4kW永磁发电机联合仿真性能与波形分析 随着新能源技术的快速发展,永磁发电机作为一种高效、可靠的能源转换设备,其在风能、水能等可再生能源发电以及电动汽车领域得到了广泛应用。4kW作为永磁发电机的一个典型功率级别,其性能优化和设计研究显得尤为重要。本文将详细介绍4kW永磁发电机在使用Maxwell与Simplorer两款仿真软件联合进行性能分析和波形研究的过程,以及通过仿真所得波形的性能评估。 Maxwell软件作为一款基于有限元分析的电磁场仿真工具,能够对永磁发电机的磁场分布、电磁力和磁链等电磁特性进行精确计算。通过Maxwell的仿真分析,可以获取到发电机在各种工况下的电磁性能参数,为发电机的设计和优化提供理论依据。 接着,Simplorer软件则擅长于对电子电路和电力系统的多域系统仿真。它能够模拟电磁部件在电路中的实际工作情况,分析电路的动态性能,以及在不同控制策略下的系统响应。通过Simplorer的仿真,可以进一步验证和优化发电机的电路设计,确保发电机在实际运行中具有良好的稳定性和可靠性。 联合使用Maxwell和Simplorer仿真软件,可以实现从电磁场分析到电路系统仿真的无缝对接。在本研究中,首先是通过Maxwell软件对永磁发电机的电磁场进行建模和仿真,得到电机的磁场分布图、磁密分布图等关键参数。然后,将这些仿真数据作为输入条件,导入到Simplorer软件中进行电路层面的仿真分析。通过这样的联合仿真,可以同时考虑到电磁场的变化对电路行为的影响,以及电路控制策略对电机电磁性能的作用。 波形研究是评估发电机性能的重要指标之一。在联合仿真中,可以模拟发电机在额定负载、过载、变负载等多种工况下的输出电压和电流波形。通过对波形的分析,可以评估发电机的动态响应速度、电压稳定性、电流谐波含量等关键指标。此外,波形的失真程度也可以反映出电机电磁设计的优化程度,如电机的齿槽效应、饱和效应等。 在永磁发电机的研究和开发过程中,联合仿真技术的应用极大地提升了设计效率和准确性。通过仿真结果的反馈,设计人员可以快速地调整电机的设计参数,以实现优化目标。例如,如果仿真结果显示发电机在特定工况下的电压波形失真较大,则可能需要对电机的磁路设计进行调整,以改善其电能质量。 4kW永磁发电机在Maxwell与Simplorer联合仿真下的性能分析和波形研究,不仅能够提供发电机设计和优化的重要数据,而且还能预测其在不同工作条件下的实际表现。随着仿真技术的不断完善,其在永磁发电机设计领域的应用将越来越广泛,为新能源技术的发展贡献力量。
2025-08-12 10:37:23 1.59MB rpc
1
COMSOL 5.6激光超声仿真:板状材料中激光激发超声波数值模拟研究,COMSOL激光超声仿真:板状材料中激光激发超声波的数值模拟 版本为5.6,低于5.6的版本打不开此模型 ,核心关键词:COMSOL激光超声仿真; 板状材料; 激光激发超声波; 数值模拟; 版本5.6; 低版本无法打开模型。,COMSOL 5.6版激光超声仿真:板材激光激发超声波数值模拟技术解析 COMSOL Multiphysics是一种强大的仿真和建模软件,它用于多物理场的耦合分析。最新版本的COMSOL 5.6引入了新的功能,其中就包括了对激光超声波的研究。激光超声仿真是一种利用激光技术产生的超声波进行材料检测和分析的方法。这种方法特别适合于板状材料,因为它可以在不接触材料表面的情况下,对材料进行无损检测。通过COMSOL 5.6的数值模拟功能,研究者可以深入分析激光如何在板状材料中激发超声波,并观察超声波的传播、反射和衍射等物理现象。 在进行激光超声仿真时,通常需要考虑多个物理过程,包括激光脉冲与材料的相互作用、热弹性效应以及超声波的传播等。这些过程在COMSOL 5.6中可以通过多物理场耦合的模块来实现。板状材料中激光激发超声波的数值模拟研究对于理解和预测超声波在材料中的行为至关重要,这有助于改进材料检测技术,提高检测的准确性和效率。 值得一提的是,由于COMSOL 5.6引入的新功能,旧版本的COMSOL软件无法打开或运行5.6版本所创建的模型文件。因此,对于那些仍然使用旧版本软件的用户来说,升级到最新版本是必要的,以确保能够利用所有的最新功能和研究成果。 本压缩包中包含的文件,如“中压电纵波直探头水耦技术探讨超声激励与反射波接收.doc”、“在的最新版本中我们引入了一种全新的功能激光超.doc”、“激光超声仿真深度解析板状材料中激光激发超声波的.html”、“标题探索激光超声仿真从板状材料中数值模拟超声波.html”、“激光超声仿真板状材料中激光激发超.html”,以及相关的图像和文本摘要文件,均为研究和讨论激光超声仿真技术及其在板状材料中的应用提供了详细的理论和实践内容。通过这些文件,研究人员和工程师能够获得深入的技术分析和实践指导,进而推动相关领域的发展。 此外,文档名称中提到的“数据结构”标签可能表明,在进行仿真和数值分析的过程中,需要对大量的数据进行有效的组织和处理。合理的数据结构有助于提高仿真模型的运行效率,确保数值模拟的准确性。 COMSOL 5.6在激光超声仿真领域的应用提供了一种强大的工具,为研究人员和工程师提供了新的研究方向和改进空间。通过这种仿真技术,可以更好地理解超声波在板状材料中的传播机制,为材料检测和质量评估提供了新的可能性。
2025-08-12 09:18:08 289KB 数据结构
1
基于Comsol的工件感应加热仿真计算模型:多物理场耦合的电磁热分析与温度场分布研究,Comsol工件感应加热仿真模型:电磁热多物理场耦合计算揭秘温度场与电磁场分布,Comsol工件感应加热仿真计算模型,采用温度场和电磁场耦合电磁热多物理场进行计算,可以得到计算模型的温度场和电磁场分布 ,Comsol;感应加热;仿真计算模型;温度场;电磁场;耦合电磁热多物理场;温度场分布,Comsol仿真计算模型:多物理场耦合感应加热的温度与电磁场分布 在工程技术和科学研究中,感应加热技术被广泛应用于材料加工和处理领域。感应加热的核心原理在于利用交变电流在工件中感应出涡流,从而产生热效应。工件中的涡流强度受到工件材料、形状、大小以及交变电流的频率和幅值等多种因素的影响。随着现代计算技术和仿真软件的发展,利用如Comsol Multiphysics这类仿真软件对工件的感应加热过程进行模拟和分析,已成为一个重要的研究方向。 Comsol Multiphysics是一个强大的多物理场耦合仿真软件,能够模拟复杂物理现象并提供多物理场交互作用的仿真分析。在感应加热研究中,Comsol可以用于构建包含电磁场和温度场的耦合模型。在电磁场分析中,软件能够计算出工件中感应电流的分布,以及由此产生的热源分布。温度场分析则关注由电磁热效应导致的工件温度变化,以及温度随时间和空间的分布情况。通过模拟,研究者可以直观地观察到工件在加热过程中的温度变化,并对其内部和表面的温度梯度进行分析。 通过多物理场耦合技术,Comsol软件能够将电磁场计算结果作为热源输入,进而进行温度场的计算。这种耦合分析能够确保模拟结果的精确性,因为电磁场和温度场之间存在相互依赖和影响。例如,材料的电磁特性可能会随着温度的变化而改变,这种变化又会影响电磁场的分布,进而影响温度场。因此,通过多物理场耦合仿真,可以得到更为准确的温度场和电磁场分布。 在实际应用中,多物理场耦合仿真技术可以用于指导工件的加热工艺设计和优化。例如,在感应淬火、焊接、热处理等工艺中,通过仿真分析可以预测并控制工件的温度分布,从而达到改善加工质量、提高生产效率的目的。此外,仿真技术还可以用于研究材料在特定温度下的行为,比如电击穿现象和电树枝效应等,这对于新型复合材料的研究和应用具有重要的指导意义。 仿真计算模型的建立涉及对工件材料属性、几何结构、感应加热装置参数以及边界条件的详细定义。工件的几何模型需准确反映实际形状,材料属性应包括电导率、磁导率、热容等参数,而感应加热装置的参数则包括线圈的匝数、电流频率等。边界条件通常涉及工件与周围环境的热交换,如对流、辐射和传导等。通过设置合理的边界条件,可以模拟实际工况下工件的加热过程。 仿真结果的准确性不仅取决于模型的精确性,还与计算方法和网格划分的精细程度有关。在进行仿真分析时,网格划分的密度直接影响计算结果的精度,过粗的网格可能导致结果不够精确,而过细的网格会增加计算量。因此,在实际操作中,需要根据具体情况调整网格划分策略,以获得既准确又高效的仿真结果。 基于Comsol的工件感应加热仿真计算模型是研究工件感应加热过程中电磁场与温度场耦合的重要工具。通过构建多物理场耦合模型,可以有效地分析工件的温度场分布,优化加热工艺,提高产品质量,并为新型材料的研究提供理论指导。
2025-08-11 17:10:20 122KB xbox
1
内容概要:本文详细介绍了利用COMSOL Multiphysics进行地下二氧化碳封存仿真的方法和技术要点。主要内容涵盖两相流模块设置、温度场耦合、地层分层建模以及力学模块处理等方面。文中不仅提供了具体的数学模型和代码片段,如相对渗透率函数、热膨胀系数函数等,还分享了许多实际操作中的经验和教训,强调了不同物理场之间的相互作用及其对模拟结果的影响。 适合人群:从事地质工程、环境科学、石油工程等领域研究的专业人士,尤其是那些需要进行地下流体运移和储层特性研究的科研工作者。 使用场景及目标:适用于希望深入了解地下二氧化碳封存机制的研究人员,帮助他们掌握如何使用COMSOL软件构建复杂的多物理场耦合模型,从而更好地预测和评估二氧化碳封存的安全性和有效性。 其他说明:文章中提到的技术细节对于确保模拟精度至关重要,例如正确处理单位转换、选择合适的渗透率模型、考虑温度变化对岩石性质的影响等。此外,作者还提醒读者应注意避免一些常见的错误配置,以免导致不可靠的结果。
2025-08-11 11:39:42 844KB
1
在游戏开发领域,拾取算法是实现用户与游戏世界交互的重要技术之一,尤其在3D游戏交互图形应用程序中,拾取算法更是扮演了至关重要的角色。传统上,拾取算法的实现往往依赖于鼠标点击来选择图形,并返回图元的标志及相关信息。随着3D图形技术的飞速发展,游戏场景变得越来越复杂,包含的图元数量也日益庞大,传统算法面临效率低下的问题,这在很大程度上影响了游戏体验。 为了解决这一问题,本文提出了一种基于八叉树结构的改进拾取算法。八叉树作为一种树型数据结构,被广泛应用于3D游戏场景的渲染中。它的工作原理是将整个场景递归地划分成更小的子区域,每个节点最多有八个子节点。这种结构不仅能够提高渲染效率,还能用于实现更高效的拾取算法。 八叉树拾取算法的关键在于,它能有效地减少鼠标拾取时所需进行的射线与图元相交判断次数。算法首先将整个网格模型的包围盒作为根节点,然后递归地对其进行分割,直到每个节点所包含的三角形数量少于一个特定阈值(例如30)。在这一过程中,不含三角形图元的节点将被剔除,最终形成一个包含三角形图元的树状结构。接着,算法会计算拾取射线,并判断它与场景中所有三角形图元的关系,以此来确定鼠标是否拾取到某个对象。与传统方法相比,该算法大大减少了不必要的计算量,从而提高了拾取的运算效率。 文章中提到了DirectXsdk中的D3DXIntersect方法,这是一种常用的判断拾取问题的方法。该方法通过计算拾取射线与所有三角形图元的交点来判断鼠标是否选取物体。尽管它提供了一种解决方案,但若场景中三角形数量庞大,仍然可能导致效率问题。因此,使用基于八叉树的改进拾取算法能够更好地应对复杂场景下的拾取需求。 为了验证八叉树拾取算法的效果,文章通过实证研究探讨了该算法在游戏中的应用效果。研究结果表明,在实际应用中,该算法能有效提高鼠标拾取技术的响应速度。在对鼠标点击响应要求较高的实时射击游戏中,这一点尤为重要。拾取算法的高效性直接影响到游戏的流畅度和玩家的操作体验,因此,在高复杂度的游戏环境中,基于八叉树的拾取算法具有很高的参考价值和应用潜力。 基于八叉树的拾取算法通过优化数据结构和减少不必要的计算来提高性能,使得拾取操作更加高效。这一技术的应用不仅能够改善游戏体验,还能推动游戏开发技术的进步。随着游戏图形和交互技术的不断进化,我们有理由相信,八叉树拾取算法及其相关技术将会在未来的游戏中扮演更加重要的角色。
2025-08-10 09:39:32 314KB
1