《清华大学李军中文褒贬义词典》与《知网Hownet情感词典》是中文自然语言处理领域的重要资源,对于理解和分析文本中的情感倾向具有重要意义。这两部词典在学术研究和实际应用中扮演着关键角色。 《清华大学李军中文褒贬义词典》是由清华大学计算机科学与技术系的李军教授团队编纂的一部专门针对中文词汇情感倾向的词典。该词典收录了大量的汉语词汇,并对每个词汇进行了情感极性标注,包括正面、负面和中性等,为文本情感分析提供了基础数据。词典还可能包含了词汇的近义词和反义词信息,帮助构建词汇间的情感关系网络,提升情感分析的准确性。 而《知网Hownet情感词典》则是基于知网(China知网)的大规模语料库,采用人工注释的方式构建的情感词典。Hownet情感词典不仅涵盖了词汇的基本情感极性,还可能包括了词汇的语义关系,如同义词、反义词、上下位词等,使得词典在情感分析之外,也能支持更复杂的语义理解任务。此外,Hownet可能还提供了词汇的情感强度信息,这对于理解词汇在情感表达中的影响力十分关键。 除了这两个主要的词典,压缩包中还包含了其他相关资源,如“汉语情感词极值表”,这可能是对词汇情感强度的量化表示,用于区分强烈和微弱的情感表达。台湾大学NTUSD简体中文情感词典则提供了另一种视角,补充了两岸词汇在情感表达上的差异,扩大了情感分析的适用范围。情感词典及其分类则可能是一个综合性的资源,包含了多种情感词典并进行了分类整理,方便研究人员根据不同需求选择使用。情感词汇本体可能是一个系统化的框架,将情感词汇按照概念和关系进行组织,有助于构建情感分析的理论体系。 这些词典和资源的结合使用,可以极大地提升中文文本的情感分析能力,无论是用于社交媒体监控、产品评论分析、舆情监测,还是情感智能机器人等领域,都能发挥重要作用。同时,它们也是自然语言处理研究者的重要参考资料,为深入研究情感计算、语义理解等问题提供了宝贵的工具。在实际应用中,通过这些词典,我们可以训练情感分析模型,识别文本中的情感色彩,从而更好地理解用户的情绪反应,为企业决策、市场分析等提供数据支持。
2025-10-02 01:01:27 3.16MB
1
知网是中国最大的学术资源数据库,包含了丰富的学术论文、期刊文章、学位论文等资源。对于科研工作者和学生来说,它是获取专业知识的重要平台。然而,由于知网的资源是受版权保护的,直接通过程序自动化下载可能会涉及到版权问题。尽管如此,理解如何使用Python开发爬虫算法来解析和获取网页信息是一项有价值的技能,它可以帮助我们更好地理解网络数据的抓取原理。 Python作为一种强大且易学的编程语言,常常被用于网络爬虫的开发。Python中的几个关键库,如BeautifulSoup、Requests、Scrapy等,为爬虫开发提供了便利。在知网爬虫的实现中,我们通常会利用这些库的功能来完成以下步骤: 1. **发送请求**:我们需要使用`requests`库向知网的服务器发送HTTP请求,获取网页HTML源代码。这通常涉及构造URL,添加合适的参数(如搜索关键词、页码等)。 2. **解析HTML**:得到HTML后,使用`BeautifulSoup`库解析HTML内容,找到我们感兴趣的数据所在的位置。这通常涉及到HTML标签的选择和属性的查找。 3. **提取数据**:定位到数据后,我们可以使用BeautifulSoup的方法提取出文本内容,例如论文标题、作者、摘要等信息。 4. **处理分页**:如果目标数据分布在多个页面,我们需要编写逻辑来处理分页,不断请求下一页直到获取完整信息。 5. **存储数据**:将爬取到的数据以合适的格式(如CSV、JSON或数据库)存储起来,方便后续分析和使用。 6. **注意版权与反爬策略**:在实际操作时,一定要尊重知网的版权规定,不要大规模无授权爬取。同时,知网可能会有反爬虫策略,如IP限制、验证码等,需要在编写爬虫时考虑到这些问题并采取相应对策。 7. **模拟登录**:如果某些资源需要登录才能访问,可能还需要使用Python的`requests`库配合`cookies`或`session`进行模拟登录。 8. **异常处理**:为了确保爬虫的稳定运行,需要添加异常处理机制,对可能出现的网络错误、解析错误等进行处理。 9. **提高效率**:可以通过多线程或异步IO(如使用`asyncio`库)来提高爬取速度,但要注意控制请求速率,避免对服务器造成过大压力。 10. **遵守法律法规**:在进行任何网络爬虫活动时,务必遵守《中华人民共和国网络安全法》等相关法律法规,尊重网站的Robots协议,合理合法地获取和使用数据。 通过学习和实践基于Python的知网爬虫,不仅可以提升对网络爬虫技术的理解,还能掌握数据获取、处理和分析的基础技能,对于从事数据分析、信息挖掘等领域的工作大有裨益。不过,应当明确,这样的知识和技能应用于合法合规的场景,切勿滥用。
2025-06-04 20:30:03 105KB python 爬虫
1
常用词典(包含知网Hownet、THUOCL词库、台湾大学NTUSD、清华大学和大连理工大学情感词典等)
2024-04-30 20:39:37 2.68MB 中文分词
1
知网 * 通过发送解析包形式抓取数据,相比于使用selenium等方式性能稍高一些。 * 可使用知网高级检索功能进行搜索,更高效检索文献。 * 可根据网络及知网反爬虫情况选择性开启详细信息抓取及下载caj文献功能。 * 利用excel表格快速查看所需文献摘要等信息,可根据excel提供下载链接选择性下载,防止下载过快导致知网反爬。 # 使用方法 ## 安装依赖 >在验证码处理部分使用了`tesserocr`,不过验证效果目前不是很好,所以默认开启手动识别验证码。 > >如果本地没有安装`tesseract`,可以先安装这个,再执行`pip install tesserocr`。或者将`CrackVerifyCode.py`文件第15、63、64行注释后再执行安装命令。 ```shell pip install -r requirements.txt ```
2024-04-10 11:33:29 19KB 爬虫
1
知网》情感分析用词语集(beta版)
2023-09-12 12:45:26 85KB python 数据集
1
论文帮手中国知网万方维普论文查重检测系统拥有海量的文献比对库和算法库,采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,采用云计算
1
1.使用Eclispe开发,jdk1.6+ 2.项目编码方式设置为"GBK",请勿使用其他编码方式,以免出现乱码问题。 3.辞典文件放置在dict目录下,由"中文自然语言处理开放平台(http://www.nlp.org.cn)" 提供。 4.自然语言处理开放资源许可证 随代码一起发布。 5.算法参数使用《基于<知网>的词汇语义相似度计算》的实验参数,具体定义在类WordSimilarity中, 为私有静态常量,可根据需要自行修改。
2023-02-19 10:41:56 948KB HowNet
1
知网Hownet情感词典适合做情感词训练,包括主张词 正面情感词、程度级别词、负面情感词 知网Hownet情感词典适合做情感词训练,包括主张词 正面情感词、程度级别词、负面情感词 知网Hownet情感词典适合做情感词训练,包括主张词 正面情感词、程度级别词、负面情感词
2022-12-10 04:33:45 95KB 自然语言 训练语料
1
信息素养与职业发展
2022-12-03 12:19:26 30.83MB 信息素养 职业发展