描述 用于此代码是2016年我的解决办法结束8日将在私人排行榜和它是基于公共排行榜和0.79074 AUC私人排行榜与0.80396 AUC分类决策树。 软件 Matlab 2014a 数据 我使用了train_and_test_data_labels_safe.csv中标记为安全的所有数据文件。 没有进行任何预处理。 特征 在每个频道的整个10分钟文件中计算功能,而不会分成任何较短的纪元。 我基本上从示例提交脚本中获取了所有功能,并根据我的直觉和有关此主题的一些文章添加了其他功能。 功能包括: 平均值,标准偏差,偏度,峰度,光谱边缘,香农熵(用于信号和Dyads),Hjorth参数,几种类型的分形维数 使用Morlet波的10尺度小波变换的奇异值 -0.5,+ 0.5秒间隔内通道之间的最大相关性,频域中通道之间的相关性,每个二进位级上通道功率谱之间的相关性 每个频道共有73个功能,只
2022-07-26 10:20:00 45.22MB MATLAB
1
针对目前癫痫发作实时自动预测困难的问题,将开展以LSTM模型为基础的癫痫发作预测的研究,构建了基于LSTM的神经网络模型对癫痫发作进行预测。将采集到的癫痫脑电数据进行预处理,然后提取单导联脑电小波能量特征,结合构建的基于LSTM的模型来识别癫痫发作前期和发作间期的状态,从而实现癫痫发作的预测。与传统的SVM和MLP相比,本方法取得了98.5%的分类精度和零误警的结果。为未来开发癫痫发作预警系统提供了理论基础,在临床应用上具有较大的潜在价值。
1
Kaggle-EEG:使用机器学习从EEG数据中预测癫痫发作。 KaggleUni墨尔本癫痫发作预测比赛第三名
2022-03-08 15:28:40 764KB machine-learning matlab svm kaggle
1
这是墨尔本大学 AES/MathWorks/NIH 癫痫发作预测 ( https://www.kaggle.com/c/melbourne-university-seizure-prediction ) 的 MATLAB 解决方案。 它建立在使用神经网络工具箱中的自动编码器和神经网络的基础上。 压缩文件包含: 1. autoencoder_train.m, 使用自动编码器构建深度网络的脚本,如以下示例中所述: http : //www.mathworks.com/help/nnet/ug/construct-deep-network-using-autoencoders.html 。 在构建深度或堆叠网络后,深度网络将适应更多的训练数据。 2. autoencoder_test.m, 一个脚本,用于加载从训练数据构建的神经网络,并对验证和测试数据进行预测。
2021-10-13 19:52:03 5KB matlab
1
这是墨尔本大学 AES/MathWorks/NIH 癫痫发作预测 ( https://www.kaggle.com/c/melbourne-university-seizure-prediction ) 的 MATLAB 解决方案。 它建立在之前 Kaggle 癫痫发作比赛 ( https://www.kaggle.com/c/seizure-prediction ) 的获胜解决方案 ( https://github.com/drewabbot/kaggle-seizure-prediction ) 上,使用 lassoGLM统计和机器学习工具箱中的模型。 压缩文件包含: 1.calculate_features.m——从iEEG样本值计算一组特征的函数2. step1_generate features -- 加载患者训练(和测试)iEEG 样本数据并计算特征的函数(使用函数calcul
2021-09-05 19:07:37 12KB matlab
1