茶叶病害检测数据集是一项专门针对茶叶病害进行目标检测的数据集,其数据集格式包括Pascal VOC格式和YOLO格式。该数据集包含了9591张jpg格式的图片和与之对应的标注文件,标注文件包含VOC格式的xml文件和YOLO格式的txt文件。图片数量、标注数量以及VOC格式和YOLO格式的标注文件数量均为9591份,说明每个图片都配有相应的标注信息。 标注类别数为8,具体类别名称分别为:“Black rot of tea”(茶黑斑病)、“Brown blight of tea”(茶褐色斑病)、“Leaf rust of tea”(茶叶锈病)、“Red Spider infested tea leaf”(茶红蜘蛛侵染叶片)、“Tea Mosquito bug infested leaf”(茶小绿叶蝉侵染叶片)、“Tea leaf”(茶叶)、“White spot of tea”(茶白星病)、“disease”(病害)。各类别标注的框数不一,其中“Red Spider infested tea leaf”标注框数最多,为1022个,而“Brown blight of tea”标注框数最少,为8个。所有类别总计标注框数为12812个。 使用标注工具为labelImg,该工具是一种常用的图像标注软件,支持绘制矩形框来标注目标对象。由于数据集采用矩形框进行标注,这意味着目标检测模型在处理时将针对病害区域进行定位和分类。 数据集的标注规则是针对不同病害类别进行画矩形框标注。每个矩形框对应一个目标病害实例,并且包含病害的类别信息。这种标注方式使得模型训练后可以对茶叶图像中的病害区域进行检测,并识别出病害的种类。 本数据集未提供图片预览,但标注例子的缺失可能暗示在使用该数据集时,使用者需要自行查看图片和标注文件以获取理解。需要说明的是,数据集不对训练模型或者权重文件的精度作任何保证,这意味着使用该数据集训练得到的模型精度可能因实际情况而异,用户需自行负责模型的评估和调优。 此外,重要说明部分为空,说明作者没有给出额外需要注意的信息。但是,标注例子的缺失可能暗示在使用该数据集时,使用者需要自行查看图片和标注文件以获取理解。需要说明的是,数据集不对训练模型或者权重文件的精度作任何保证,这意味着使用该数据集训练得到的模型精度可能因实际情况而异,用户需自行负责模型的评估和调优。 茶叶病害检测数据集为研究者和开发者提供了丰富的图像和标注信息,用于训练和测试目标检测模型,从而实现对茶叶病害的自动识别和分类。该数据集对于推动智能农业和精准植物保护具有潜在的积极作用,尤其是在提升茶叶生产的质量和效率方面具有重要意义。
2025-08-07 09:34:02 4.2MB 数据集
1
"道路病害检测数据集:包含5万3千张RDD图像,多类型裂缝与坑槽的精准识别,已划分训练验证集,支持YOLOv5至v8模型直接应用,Yolov8模型map值达0.75,高清1920x1080分辨率",道路病害检测数据集 包含rdd一共 5w3 张 包含:横向裂缝 0、纵向裂缝 1、块状裂缝 2、龟裂 3 、坑槽 4、修补网状裂缝 5、修补裂缝 6、修补坑槽 7 数据集已划分为训练集 验证集 相关YOLOv5 YOLOv6 YOLOv7 YOLOv8模型可直接使用的 Yolov8map值 0.75 1920*1080 ,道路病害检测; RDD数据集; 横向裂缝; 纵向裂缝; 块状裂缝; 龟裂; 坑槽; 修补网状裂缝; 修补裂缝; 修补坑槽; 数据集划分; YOLOv5; YOLOv6; YOLOv7; YOLOv8模型; Yolov8map值; 分辨率1920*1080,基于道路病害识别的多模式裂缝数据集(含YOLOv5-v8模型应用)
2025-07-23 21:58:53 415KB scss
1
植物病害检测是现代农业中的一项关键技术,特别是在精准农业和智慧农业的发展背景下,对植物病害的早期识别和预防显得尤为重要。MATLAB作为一种强大的数学计算和数据分析工具,被广泛应用于图像处理和模式识别领域,因此在植物病害检测方面也发挥了重要作用。本项目“植物病害检测:有助于检测植物叶片病害-matlab开发”正是利用MATLAB进行植物叶片病害的自动识别,旨在帮助农民更有效地发现并管理作物病害。 项目的核心技术可能包括以下几个方面: 1. 图像采集与预处理:通过高分辨率摄像头或其他设备获取植物叶片的图像。然后,进行图像预处理,如灰度化、二值化、噪声去除、直方图均衡化等,以提高图像质量,突出病害特征。 2. 特征提取:在预处理后的图像上应用各种特征提取算法,如边缘检测(Canny、Sobel)、纹理分析(GLCM、LBP)、形状描述子(HOG、SIFT)等,提取出能表征病害的特征。这些特征可能是叶片的颜色变化、纹理异常或形状扭曲。 3. 分类模型构建:利用机器学习或深度学习方法,如支持向量机(SVM,本项目可能采用了多类SVM)、卷积神经网络(CNN)等,训练分类模型。通过训练数据集,模型会学习不同病害类型的特征,以便在未来对未知叶片图像进行分类。 4. 多类SVM:项目中的“MutiSVM”可能指的是多类支持向量机,它能处理多个类别间的分类问题。SVM通过构建最大间隔超平面来区分不同的类别,对于植物病害识别,可以将每个病害类型视为一个类,训练得到的模型能够判断叶片属于哪种病害。 5. 模型优化与评估:在训练过程中,可能会涉及参数调优,比如SVM的核函数选择、正则化参数C和惩罚因子γ的设定等。同时,使用交叉验证和测试数据集来评估模型的性能,常用指标有准确率、召回率、F1分数等。 6. 应用部署:将训练好的模型集成到实际系统中,例如开发一个用户友好的图形界面,农民可以通过上传叶片图片,快速得到病害诊断结果,从而及时采取防治措施。 这个项目结合了MATLAB的图像处理和机器学习能力,为植物病害的自动化检测提供了一种解决方案。通过不断优化模型,提高识别精度,可以有效帮助农民提升农作物的产量和质量,对现代农业的发展具有积极的推动作用。
2025-06-14 20:19:35 867KB matlab
1
石榴病害检测数据集VOC+YOLO格式2356张4类别.docx
2025-06-04 09:36:44 2.43MB 数据集
1
猕猴桃作为一种高经济价值的农作物,其叶片的健康状况对于果园的整体产量和果实品质具有重要影响。因此,及时准确地检测出猕猴桃叶片的病害对于病害防治具有重要意义。随着计算机视觉和人工智能技术的发展,基于深度学习的图像识别技术已成为农业病害检测的重要手段。YOLO(You Only Look Once)是一系列实时对象检测系统中的一个重要成员,因其速度快和检测精度高而受到广泛关注。YOLOv5作为该系列中的一个版本,尤其适合处理速度与准确性要求较高的场合。 猕猴桃叶片病害检测系统通常包含几个核心部分:数据集的构建、模型的训练、实时检测和结果的评估。在本系统中,使用了改进的YOLOv5模型作为核心算法。这种改进可能包括对网络结构的优化、训练方法的调整、损失函数的改进等多个方面,目的是为了提高模型在猕猴桃叶片病害检测上的准确性和鲁棒性。系统采用了大量的猕猴桃叶片病害图片进行训练,这些图片经过精心标注,每个病害区域都有精确的边界框和类别标签。 数据集的构建是深度学习模型训练的重要基础。在本系统中,数据集应该包含多种不同的病害类型,以及正常叶片的图片作为对比,以覆盖可能出现的各种情况。数据集的多样性和质量直接影响到模型的泛化能力和检测效果。在数据集构建的过程中,还需要对图片进行预处理,比如调整图片尺寸、归一化、数据增强等,以提高模型的训练效率和检测性能。 视频教程部分为用户提供了直观的学习资源,帮助用户理解整个系统的搭建过程。视频中可能涵盖了环境配置、代码解释、模型训练、结果测试等环节。这些教程不仅有助于技术人员掌握猕猴桃叶片病害检测系统的使用和开发,也使农业技术推广人员能够更加方便地学习和应用这一技术。 此外,源代码的提供使得有能力的开发者可以直接在原有基础上进行二次开发或优化,进一步提升系统的实际应用效果。源代码和数据集的开源共享也体现了科研工作者的开放态度,有利于促进学术交流和技术创新。 基于改进YOLOv5的猕猴桃叶片病害检测系统整合了先进的深度学习技术与丰富的实际应用场景。它不仅能够帮助农业工作者快速准确地识别病害,及时进行防治,还提供了完整的开发资源,为相关领域的研究者和开发者提供了便利。系统的设计兼顾了实用性与扩展性,为未来在其他作物病害检测方面的应用奠定了良好的基础。
2025-04-05 22:06:30 5.22MB
1
棉花病害检测数据集YOLO8 许可证:CC BY 4.0 此数据集是,棉花病害检测数据集YOLO8,共1024张图片,为模型可推广性创建新的对象检测基准的倡议。
2024-04-05 21:51:38 229.41MB 数据集
1
为铁道病害检测研究方向的学者提供尽可能的数据集资源,本数据集包括近距离铁道病害图像,如需更多相关数据集,请评论,作者会第一时间放出供学者研究。
2023-12-01 17:29:27 189.77MB 数据集
1
花生叶片病害检测数据集,该数据集包含图像及其标签xml文件,共335张花生叶片图像。 花生叶片病害检测数据集,该数据集包含图像及其标签xml文件,共335张花生叶片图像。 花生叶片病害检测数据集,该数据集包含图像及其标签xml文件,共335张花生叶片图像。
2022-12-12 11:28:48 7.73MB 数据集 花生 图片 深度学习
提供大量数据集,可供智能算法数据集训练
2022-10-26 14:08:03 252.85MB 数据集
1
[PPT]Python基于改进YOLOv5的烟叶病害检测系统PPT
2022-08-21 18:06:06 10.34MB YOLO PPT 烟叶病害 改进YOLO算法
1