大功率直流电机驱动板设计方案(基于IR2103芯片和高速光耦的H桥电机驱动方案,详尽驱动流程,全套技术支持),大功率H桥电机驱动板电路设计方案 此大功率直流电机驱动板采用ir2103驱动芯片,可同时驱动两路电机,使用10m高速光耦对控制信号进行隔离,最大额定电流可达100A,方案包括:硬件原理图,PCB(可直接打样测试),BOM表(直接拿后元器件),STM32测试程序,硬件测试方案,接线图等。 ,核心关键词:大功率H桥电机驱动板;ir2103驱动芯片;双路电机驱动;10m高速光耦;控制信号隔离;硬件原理图;PCB设计;BOM表;STM32测试程序;硬件测试方案;接线图。,大功率H桥电机驱动板:双路驱动、高隔离度、STM32控制电路设计方案
2025-03-27 15:11:54 918KB edge
1
CMOS集成电路设计拉扎维答案
2024-12-26 19:51:38 72.24MB CMOS 模拟集成电路
1
内容概要:本文档主要介绍了RTL8367SC(封装为LQFP128EP)这款千兆网络以太网控制器的电路应用模块,涵盖了基本的应用接口连接图及其电容配置参数等内容。适用于电子工程设计师理解和布置RTL8367SC的电路设计。 适合人群:硬件工程师与从事于网络通信设备制造的研发团队,特别是有基于RTL8367SC构建项目需要的设计者。 使用场景及目标:在实际工程项目实施过程中,帮助技术人员快速掌握RTL8367SC的物理层信号接线方式、外设组件配比规则以及电源分配方案,以完成稳定的以太网路数据交换平台部署。 其他说明:提供有关RTL8367SC最新版本的设计规范,并强调了重要修订记录。
1
目前主流的工业以太网交换机均采用双电源冗余供电,输入一般比较常见的输入的电压为直流24V、48V或者交直流110V,220V。通过模块电源(AC-DC,或者DC-DC)隔离变换到12V,由冗余芯片合并到一路接入片上DC-DC。
1
光电探测器前置放大电路设计是将光信号转化为电信号的关键环节。光电探测器,特别是光电二极管,能将光功率转化为电流。然而,实际应用中并非像简单电路所示,直接用电阻取样光电二极管的输出电流就能得到理想的电压信号。其中涉及多个因素,包括暗电流、噪声、响应速度以及后级电路匹配等复杂问题。 光电探测器存在暗电流,即使在无光照情况下也会有电流产生,这可能导致信号干扰。取样电阻的选择是个权衡过程,电阻过大将增加噪声,过小则可能降低信号电压,同时影响响应速度。光电探测器的PN结电容与取样电阻构成RC充电回路,影响响应速度。VCC电压的稳定性直接影响结电容,进而影响响应度,不稳定的电源可能导致噪声增加。 为了改善响应速度,可以通过减小取样电阻来减小RC时间常数,但这样会牺牲响应幅度。此外,较大的取样电阻虽然有利于捕捉微弱信号,但会增加输出阻抗,对后级放大电路造成负担,要求后级电路具有高输入阻抗以获取更多信号能量。 光电探测器的结构包括光生电流源和结电容,反偏电压增大可以减小结电容,提高响应速度。然而,半导体工艺中的寄生电阻会产生暗电流,无偏用法可以消除暗电流,提供良好的线性度和较低噪声,适合微弱光信号检测。有偏用法则通过施加偏压减小结电容,提高响应速度,但会引入暗电流,适用于速度优先的场景。 在有偏用法中,可能遇到运算放大器输出振荡的问题,这是因为结电容引起的信号延迟。解决办法是在反馈电阻上并联电容进行补偿。然而,实际应用中的运算放大器并非理想器件,输入级的偏置电流可能影响输出,导致异常现象,如高直流电平或零输出。 光电探测器前置放大电路设计需综合考虑多个因素,包括噪声抑制、响应速度、后级匹配以及实际器件特性。通过适当的设计和补偿策略,可以实现对不同光信号的高效检测。
2024-11-19 17:43:08 214KB
1
光电探测技术是一种利用光电效应将光信号转换为电信号的技术。光电倍增管(PMT,PhotoMultiplier Tube)是一种利用光电效应工作的电子器件,广泛应用于高灵敏度和高速光信号探测。光电倍增管具有高灵敏度、高响应速度和较大的接受面积等特点,能够探测微弱的光信号以及快速脉冲光信号。光电倍增管的基本工作原理是利用光电效应和次级电子发射的倍增过程。当光子入射到光阴极上,会产生光电子,这些光电子被电场加速并聚焦到第一个倍增极上,每个光电子在倍增极上产生3~6个二次电子,经过一系列倍增极的增益作用,最终在阳极收集到10^4~10^9个电子,从而输出较大的光电流。 在设计光电倍增管的应用电路时,需要考虑多个方面,以确保电路设计合理并能够有效地放大和处理光电倍增管的输出信号。通常,光电倍增管的应用电路包括负高压偏置电路、阳极电流I/V转换电路和同比例放大电路。负高压偏置电路能够为光电倍增管提供适当的电压,使得电子加速和倍增过程能够顺利进行。阳极电流I/V转换电路用于将收集到的电流信号转换成电压信号。而同比例放大电路则是将I/V转换后的电压信号进一步放大,以便后续的信号处理。通过对各个部分电路的精确设计和优化,可以得到较高的信号放大能力,并减小与实际测量结果的误差。本文的设计仿真结果与实际实验测得的输出电压误差为0.781mV,显示出电路设计的高精度和可靠性。 根据本文的介绍,光电倍增管的外围电路设计是否合理,会直接影响到探测器的工作范围和效果。外围电路需要根据探测系统的具体要求来进行设计,以确保光电倍增管的工作性能可以得到充分发挥。常见的光电倍增管类型包括直线聚焦型、环状聚焦型、百叶窗非聚焦型、盒式非聚焦型等,不同的类型适用于不同的应用环境和要求。 在20世纪80年代之后,光电倍增管进入快速发展的阶段,出现了各种结构和功能的光电倍增管。光电倍增管的应用范围非常广泛,包括医学成像、高能物理实验、天文学观测、核辐射监测等领域。由于其在探测微弱光信号方面的能力,光电倍增管成为了闪烁体探测器中不可或缺的组成部分。在实际应用中,根据探测器的特定需求,对光电倍增管的外围电路进行精心设计和调整,可以极大地提高探测器的性能,满足科研和工业应用中的高标准要求。
2024-11-07 20:25:24 1.35MB 光电探测技术
1
一位全加器、八位串行可控加减法器。circ文件,下载后直接用logisim打开即可。只实现了一位全加器、八位串行可控加减法器,其他部分没有实现。
2024-11-07 17:15:58 395KB 计算机组成原理 logisim画CPU
1
这是拉扎维编著的模拟CMOS集成电路设计的电子版,它详细介绍了模拟集成电路设计的方法。是学习集成电路设计一本必备的教材。复旦大学就是使用这一本教材。 另外,文件较大,所以做了分卷压缩,下载的朋友需要下载下来两个分卷再解压方可使用。
2024-09-26 09:41:17 9.54MB 集成电路 CMOS
1
Logisim 头歌8位可控加减法电路设计图解及代码(计算机组成原理)资源免费提供!!!!!​​ 实验目的 帮助学生掌握一位全加器的实现逻辑,掌握多位可控加减法电路的实现逻辑,熟悉 Logisim 平台基本功能,能在 logisim 中实现多位可控加减法电路。 实验内容 在 Logisim 模拟器中打开 alu.circ 文件,在对应子电路中利用已经封装好的全加器设计8位串行可控加减法电路,其电路引脚定义如图所示,用户可以直接使用在电路中使用对应的隧道标签,其中 X,Y 为两输入数,Sub 为加减控制信号,S 为运算结果输出,Cout 为进位输出,OF 为有符号运算溢出位。 实验步骤 处理减法运算,连接电路图。 探求溢出判断的方法。 由2中得到的方法连接电路图。 在实验平台上进行测试。 通过异或门给到,为0是加法过程,为1是减法过程!!! 最后,就十分顺利的通过了这一个实验!!!!!!!!!!
2024-09-24 00:44:20 618KB
1
【高速扫描振镜驱动原理图】的描述提到了“高速振镜驱动电路”,这涉及到电机驱动和电路设计两个关键领域。高速振镜是一种常见的光学扫描元件,常用于激光打标、投影显示等领域,通过快速改变镜片的角度来扫描光束。 电机驱动部分,电路主要由以下几个部分构成: 1. **PIV运算后的信号**:PIV可能是位置或速度的反馈信号,经过运算后用于控制电机的动态响应。这种反馈机制确保了电机能够精确地按照指令运动。 2. **电流检测电阻**:用于实时监测电机的工作电流,确保电机在安全范围内运行,并可以用来调整电机扭矩和速度。 3. **差分位置指令信号输入**:差分信号能提高抗干扰能力,提供更准确的位置控制指令。 4. **实际位置信号输入**:来自电机编码器的信号,用于实时反馈电机的当前位置,与指令位置进行比较,形成误差信号。 5. **积分调节环节**和**速度调节环节**:是PID(比例-积分-微分)控制器的一部分,通过积分作用消除稳态误差,通过速度调节快速响应变化。 6. **误差信号**:是位置指令与实际位置的差值,经过频率补偿后,其大小可以调整,以适应不同系统的需求。 7. **比例系数调节**和**积分系数调节**:是调整PID控制器性能的重要参数,根据系统特性和应用需求进行设定。 8. **误差幅度限制**:防止因误差过大导致系统不稳定或损坏设备。 9. **窗口比较器**和**逻辑输出接口**:当误差超过预设范围时,输出逻辑信号,可用于报警或控制系统其他部分的动作。 10. **位置前馈**:基于当前位置的信息,提前调整电机的驱动信号,提高系统的响应速度。 电路中涉及的元器件包括运算放大器(如OP27、OP470G等)、电源芯片(如LM675、LM7812CT、LM7912CT等)、比较器(如LM339)、电源滤波电容(如1000uF 25V)以及各种电阻、电容等,这些共同构成了一个稳定、高效的驱动电路。 此外,电路还包含了电源驱动部分,如功率驱动电源电路,以及电流检测电路,用于提供稳定的工作电压和电流,确保电机的高效、安全运行。 综上,【高速扫描振镜驱动原理图】主要涵盖了电机驱动技术中的反馈控制策略、电路设计技巧以及电源管理等方面,是实现高速振镜精确扫描的关键。
2024-09-13 18:26:48 239KB 电机驱动 电路设计
1