Howland电流泵是一种由麻省理工学院的Brad Howland发明的运算放大器(OPA)电流源,它在电路设计中具有重要的应用。这个电路利用运放的特性,能够提供一个独立于负载电阻的恒定电流输出。对于不熟悉电子工程的人来说,理解这种电流源可能有些困难,但通过逐步解析其基本原理,我们可以更好地了解它的工作机制。 我们从简单的电流镜电路开始。电流镜是一种常见的电路结构,它可以复制电流,其中一个支路的电流与另一个支路的电流保持一致。在运放电流镜中,运放的反相输入(-)和同相输入(+)之间的电压相等,即v-= v+。在这种情况下,运放的输出电流iL并不依赖于负载电阻RL或输入电压vL,而是由Rf+上的电压决定。Rf+的电压必须与Rf-的电压相同,且不受地电位影响。 接下来,我们将电流镜转变为Howland电流泵,通过将Rf+连接到不同的电压点,如vR。在vR=0V时,电路成为一个单运放差分放大器。当vR=VOS(恒定偏置电压)时,输出电压vO会增加,但为了保持v-=v+,v+/vO必须小于1,以防止运放输出达到饱和。为了实现这一目标,Rf+被分解为Rf-Rs和Rs两个串联电阻,这样可以引入正反馈,调整输出电压以保持输入平衡。 在这个电路中,Rs上的电流iL与Rf-Rs上的电流iB分离,由一个电压增益为a的缓冲器实现。运放的输入电压vL可通过以下公式计算:vL = (iI * Rs) / (1 + a),其中iI是输入电流,a是缓冲器的增益。最终的输出电流iL与vL无关,仅与输入电压vI有关,这是因为正反馈环路会抵消vL的变化。 当负载电阻RL增大导致vL增加时,正反馈环路会放大vL的增量,通过运放的同相比例增益Av+进行补偿,使vO相应增加,从而保持iL不变。这种自举提升的行为确保了vS(Rs两端的电压)保持稳定,进而维持iS(流经Rs的电流)的恒定,即使vL变化,iL也不会受到影响。 在最简单的形式中,Howland电流源可以没有×1缓冲器,但Rf+仍需分为Rf-Rs和Rs,以满足电流源条件。此时,iL和iB共同流经Rs,但仍然可以通过电路分析技术将其分开。反馈路径的总串联电阻Rf保持不变,而Rf/Ri的比例在正反馈和负反馈路径中必须相等,以确保电压自举效应使得iL独立于vL。 Howland电流泵是一个巧妙的电路设计,它利用运放的特性创建了一个能够提供恒定电流的源,该电流独立于负载电压的变化。通过理解其内部的工作原理,包括反馈机制、电阻分压和电压自举,我们可以更好地应用这个电路于各种电源设计和技术应用中。
2024-08-14 18:41:46 154KB 电源设计 运放电流源 Howland
1
设计了一种新型的、不随电源电压变化的、温度系数很小的nA量级CMOS基准电流源,并分析了该电路的工作原理。该基准电流源不需要使用电阻,大大节省了芯片的面积。基于TSMC 0.18 μm CMOS厚栅工艺,使用Spectre对电路进行了仿真。仿真结果表明,在输出基准电流为46 nA的情况下,该电路的温度系数为24.33 ppm/℃,输出电流变化率仅为0.028 9%/V,电源抑制比(PSRR)最高可达-85 dB,电路消耗的电流小于200 nA。
2024-04-03 19:12:18 324KB 电源管理
1
许多应用利用精密电流源提供恒定电流,包括工业过程控制、仪器仪表、医疗设备和消费电子产品。例如,过程控制系统利用电流源提供电阻温度检测器(RTD)所需的激励电流;数字万用表利用电流源测量未知电阻、电容和二极管;长距离信息传输广泛使用电流源来驱动4mA至20mA电流环路。   图1 差动放大器和运算放大器构成精密电流源   精密电流源传统上采用运算放大器、电阻和其它分立器件构建,但存在尺寸、精度和温度漂移等方面的不足。现在,高精度、低功耗、低成本集成差动放大器(例如AD8276)的出现,使得尺寸更小、性能更高的电流源变成现实,如图1所示。反馈缓冲器使用低失调、低偏置电流放大器,例如AD
2024-03-16 18:18:48 318KB
1
确定从等间距电极的线性阵列获得的一组电压轨迹的一维(空间)电流源密度 (CSD)。 CSD 可以使用标准 CSD 方法(Nicholson & Freeman, 1975, J Neurophysiol, 38(2): 356-68)或逆 (delta) CSD 方法(Petterson 等人,2006,J Neurosci Methods,154 (1-2):116-33)。 函数脚本中包含有关如何使用该函数的完整说明。 任何错误/错误的建议或迹象将非常受欢迎。
2023-04-23 17:49:16 5KB matlab
1
深刻理解电压源和电流源及其等效变换的概念。熟练掌握节点电压法、叠加原理、等效电压源定理。了解负载获取最大功率的条件。
2023-04-14 16:21:15 63KB 电压源 电流源 等效变换 文章
1
采用两个仪表放大器和两个晶体管,您可以构建一个精度达0.01%的压控电流源(如图2所示)。该电流源的输入电压范围为±10V,输出电流与输入电压成正比,而且即使在输出电流高达90mA时,仍可保持高精度。
2023-03-06 15:43:30 99KB 放大器
1
低纹波、高精度电流源是一种重要的仪器设备;广泛应用于电光源、电化学、通信、测量技术、电子仪器等领域。目前,市场上的电流源不具备连续可调功能;并且输出电流范围小、精度低、纹波大、价格昂贵;为应对市场需求;本文设计了输出电流为0~5A;功率为100W的高精度程控电流源;主要技术指标为:电流源工作电压220V/50Hz;输出电流范围0~5A连续可调;线路调整率《0。05%+0。1MA;负载调整率《0。05%+1MA;设准确度?0。05%+2MA;回读准确度《0。05%+2MA;系统设定分辨率为0。1MA;回读分辨率为0。01MA。1、线性稳流原理数控式线性稳流电路结构如图1所示,它由调整管、误差放大
1
电压控制型电流源(VCCs)广泛用于医疗器械、工业自动化等众多领域。VCCs 的直流、交流性能和驱动能力在这些应用中至关重要。本文分析了增强型 Howland 电流源(EHCS)电路的局限性,并阐述了如何利用复合放大器拓扑进行改进,以实现高、快速建立的±500 mA电流源。  增强型Howland电流源  图1所示为传统的Howland电流源(HCS)电路,而公式1显示了如何计算输出电流。如果R2足够大,输出电流将保持恒定。  图1.Howland电流源电路  虽然较大的R2会降低电路速度与,但在反馈路由中插入一个缓冲器,形成一个增强型Howland电流源可以解决这一问题,如图2所示。所有通过
1
本文所设计的数控电流源采用PIC16F877A单片机为核心部件,键盘、显示、D/A、开关电源等模块为外围电路。
2023-01-02 22:11:55 198KB 单片机 PIC16F877A 数控电流源 文章
1
数控直流电流源课程设计与制作.doc
2022-12-12 14:19:54 814KB