内容概要:本文介绍了一种基于CNN-LSTM算法的锂离子电池健康状态(SOH)估计方法。首先,从放电电压最低点时间、平均放电电压和平均放电温度三个方面提取间接健康因子。接着,构建了一个CNN-LSTM联合模型来评估锂电池的健康状态,并利用NASA卓越预测中心的数据集(B0005、B0006)进行了验证。实验结果显示,该方法具有较高的估计精度,特别是在电池容量衰减到80%以下时,能够准确捕捉关键拐点。此外,文中详细介绍了数据预处理、模型架构设计以及训练过程中的一些优化技巧,如早停机制、回调函数设置等。 适合人群:从事电池管理系统研究、机器学习应用开发的研究人员和技术人员。 使用场景及目标:适用于需要对锂离子电池健康状态进行精准评估的应用场景,如电动汽车、储能系统等领域。目标是提高电池管理系统的可靠性和安全性,延长电池使用寿命。 其他说明:文中提供的代码实现了完整的SOH估计流程,包括数据预处理、模型训练和结果可视化。特别提到,在模型中加入TimeDistributed层可以进一步提升准确率,但会增加计算成本。
2026-02-06 00:06:10 1.1MB
1
本文介绍了基于CNN-GRU混合模型的锂电池健康状态(SOH)估计方法。该方法通过结合卷积神经网络(CNN)的局部特征提取能力和门控循环单元(GRU)的时序依赖性建模,显著提升了SOH估计的精度。文章详细阐述了数据预处理、特征选择、模型架构设计及训练过程,包括输入层、CNN特征提取层、GRU时序建模层和输出层的设计。此外,还提供了Matlab程序设计的核心代码片段,展示了参数设置、模型训练、预测及性能评估的具体实现。该方法在锂电池的剩余寿命预测、充放电策略优化和热失控风险预警等方面具有重要应用价值。 卷积神经网络(CNN)与门控循环单元(GRU)的结合,构成了一种先进的锂电池健康状态(SOH)估计模型。CNN擅长从数据中提取局部特征,而GRU则具有处理时间序列数据的能力。当两种技术组合时,不仅继承了各自的优势,还通过协同作用进一步提高了模型在SOH估计上的精度。 具体来说,CNN部分由卷积层、激活函数层等组成,能够自动提取锂电池在充放电过程中产生的电压、电流和温度数据的局部相关特征。GRU则通过其特有的门控机制,捕捉这些特征随时间的动态变化,以及长期依赖关系。模型的输入层接收原始数据,CNN层进行特征提取,GRU层进一步处理时序特征,而最终的输出层则根据前面层的特征综合给出SOH的估计。 在文章中,数据预处理部分至关重要,包括归一化、滤波和去噪等步骤,确保了数据质量,为后续模型训练打下了良好的基础。特征选择阶段则依据电池数据特性,筛选出对SOH估计有贡献的关键特征,从而优化模型性能。 模型架构的设计经过精心策划,旨在最大化发挥CNN和GRU的优势。在训练过程中,模型通过反向传播算法和梯度下降法等方法不断调整参数,以减少预测误差。训练完成后,模型能够对新的锂电池数据进行快速准确的SOH估计。 Matlab程序设计的代码片段详尽地展示了整个模型构建、训练和预测的过程。代码中包含了模型参数的初始化、模型训练的循环、测试数据的加载与处理、以及性能评估的实现等关键环节。由于代码片段的开放性,其他研究人员可以轻松地复用或改进这些代码,以适应不同的研究需求。 该方法在实际应用中具有广泛前景。例如,准确估计锂电池的剩余寿命对于电池管理系统而言至关重要,它直接关系到设备的运行时间、维护成本和安全问题。此外,在电池充放电策略的优化中,通过实时监控SOH,可以动态调整充放电速率和循环次数,从而延长电池寿命。同时,对热失控风险的预警也可以通过监控电池健康状态来实现,提早发现异常状态,防止热失控发生。 在深度学习领域,该方法不仅为锂电池健康管理提供了一个有效的解决方案,也扩展了深度学习模型在处理复杂的时序数据中的应用。Matlab编程的应用,不仅体现了该研究领域高度的跨学科特性,还展示了工程实践中的实用性。 在锂电池健康管理的研究背景下,深度学习与工程实践的结合为未来电池技术的发展开辟了新的道路。随着相关技术的不断进步,锂电池的性能将会更加稳定,使用寿命更长,为可再生能源和电动汽车等产业提供了坚实的支撑。通过优化电池管理系统,可进一步提高能源利用效率和降低环境影响,这对整个社会的可持续发展具有重大意义。
2026-02-06 00:03:52 54KB 深度学习 Matlab编程
1
内容概要:本文详细介绍了使用MATLAB/Simulink构建电动汽车动力电池健康状态(SOH)估计模型的方法。模型分为三个主要部分:电池等效电路、SOC估算器和SOH计算模块。核心算法采用扩展卡尔曼滤波器进行SOC修正,并通过监测满充阶段的电压变化来计算SOH。文中提供了详细的代码实现,包括参数在线更新、温度补偿、以及模型验证方法。此外,还讨论了常见的调参技巧和注意事项,如SOC初始值敏感性和噪声注入等。 适合人群:从事电动汽车电池管理系统研究的技术人员、高校相关专业师生、对电池健康管理感兴趣的工程技术人员。 使用场景及目标:适用于电动汽车电池健康状态评估、电池管理系统优化、电池老化特性研究等领域。目标是提高电池健康状态估算的准确性,延长电池使用寿命,确保车辆安全可靠运行。 其他说明:建议读者在理解和掌握基本原理的基础上,逐步深入调优模型参数,避免盲目增加复杂度。同时,推荐使用公开数据集进行模型验证,确保结果的可靠性。
2025-07-24 16:37:17 119KB
1
NASA锂离子电池数据包。包括其中估算SOH常用的5、6、7、18号电池测试数据,还有例25、26、27等各种型号电池的充电放电以及阻抗测试等数据
2023-10-13 20:31:53 199.96MB 测试 NASA电池 电池SOH
1
适合做锂电池寿命预测和老化、soc
2021-07-06 09:09:24 8.11MB NASA电池 soh soc 锂电池数据
1
牛津电池退化数据集1包含了8个小锂离子袋电池的电池老化数据的测量。所有的电池都在40℃的热室中进行测试。里面有详细的电压电流温度时间以及容量的数据,如需要数据处理代码私聊我。
2021-04-16 18:07:26 253.83MB 电池数据 数据库 电池SOH 电池寿命循环
1
IEEE的40+篇论文,主要是电池的SOH预测相关论文,也有电池动车电池预警相关的论文,并且附带CSV总纲文件描述论文,带摘要。可以私信加我微信,聊一下毕设。
2021-03-13 10:05:22 65.37MB 电池SOH 电动汽车
1