内容概要:本文档详细介绍了基于AD5754BREZ和REF192ESZ构建的16位、四通道、单极性/双极性电压输出DAC电路的设计与特性。AD5754支持多种电源电压范围,确保了16位单调性,具有低积分非线性(INL)误差和快速建立时间。它内置基准电压缓冲器和输出放大器,减少了外部组件的需求,降低了成本并节省了电路板空间。该电路适用于闭环伺服控制系统,能够精确地将数字信号转换为模拟电压输出,同时提供了灵活的输出范围选择,包括单极性和双极性模式。为了达到最佳性能,推荐使用多层电路板,并遵循特定的布局、接地和去耦技术。 适合人群:电子工程技术人员,尤其是从事模拟电路设计、嵌入式系统开发的专业人士。 使用场景及目标:①用于需要高精度、多通道电压输出的应用场合,如工业自动化、测试设备和医疗仪器;②帮助工程师理解和掌握高性能DAC的工作原理及其在实际项目中的应用方法。 其他说明:文中引用了多个Analog Devices的技术资料作为补充阅读材料,以便读者深入了解相关理论和技术细节。此外,还提到了官方提供的数据手册和评估板资源,方便用户获取更多技术支持和实验验证。
2025-09-10 18:14:29 174KB 模拟数字转换 电压输出 伺服控制
1
一款200W高效能开关电源的设计方案,采用了PFC(功率因数校正)、LLC谐振变换器和同步整流技术。该电源支持12V和24V双电压输出,具有高达94%的效率和超过0.98的功率因数。文中不仅提供了详细的电路参数、PCB布局、变压器电感参数和BOM清单,还展示了PFC、LLC和同步整流的关键控制代码及其工作原理。此外,该设计方案在紧凑的空间内实现了高性能,适用于多种应用场景。 适合人群:电力电子工程师、硬件设计师、从事电源设计的技术人员。 使用场景及目标:①用于工业设备、消费电子产品和其他需要高效电源供应的场合;②帮助工程师理解和实现高效率、高功率因数的开关电源设计。 其他说明:该方案不仅提供了理论和技术细节,还包括实用的工程数据,如PCB布局和元件清单,便于实际生产和应用。
2025-09-06 22:24:03 459KB
1
三相模型预测控制逆变器:650V直流侧电压在dq坐标系下的控制策略,PI算法与MPC算法结合实现可调参考电压输出,三相模型预测控制逆变器:650V直流侧电压在dq坐标系下的控制策略,PI算法与MPC算法结合实现可调参考电压输出,三相模型预测控制(MPC)逆变器,直流侧电压为650v,在dq坐标系下进行控制,电压外环采用PI算法,电流内环采用模型预测控制算法,通过matlab function实现,输出参考电压值可调。 ,三相模型预测控制(MPC)逆变器; 直流侧电压650v; dq坐标系控制; 电压外环PI算法; 电流内环模型预测控制算法; Matlab function实现; 输出参考电压值可调,三相模型预测控制逆变器:PI+MPC控制算法下的电压电流管理
2025-07-21 15:33:16 3.52MB paas
1
### 一种基于PWM的电压输出DAC电路设计 #### 摘要及背景介绍 在电子技术和自动化的领域中,数字信号通常需要转换成模拟信号来驱动各种物理设备或传感器。这种转换过程通常由数模转换器(DAC)完成。然而,并非所有微控制器都内置有高精度的DAC模块,这在一定程度上限制了系统的灵活性和成本效益。针对这一问题,作者提出了一种基于PWM(脉宽调制)信号实现DAC的设计方案。这种方法不仅能够显著降低成本,而且还能简化电路设计,提高转换精度。 #### 理论基础:PWM与DAC的关系 **PWM**是一种通过改变脉冲宽度来调制信号的技术。在电子电路中,PWM信号通常表现为一系列等幅不等宽的矩形脉冲,其宽度的变化决定了信号的平均值。理论上,可以通过对PWM信号进行滤波来提取其平均值,从而实现从数字信号到模拟信号的转换。 **PWM到DAC的转换**可以通过以下步骤实现: 1. **理论分析**:通过对实际应用中的PWM波形进行频谱分析,确定其直流分量与交流分量。PWM波形的直流分量与其占空比成正比,而交流分量则是由不同频率的谐波组成。 2. **滤波处理**:利用低通滤波器去除PWM信号中的高频谐波成分,保留其直流分量。这样经过滤波后的信号就代表了PWM信号的平均值,也就是模拟电压输出。 #### 转换误差及其解决方法 在实际应用中,由于PWM信号的特性以及滤波器的设计等因素,可能会引入一定的转换误差。这些误差主要包括: - **非理想低通滤波器**:实际的低通滤波器无法完全去除高频谐波,这会导致输出信号存在一定的纹波。 - **PWM信号的非线性**:实际PWM信号的高低电平可能存在偏差,导致输出电压与预期不符。 - **电路参数不匹配**:例如,电源电压波动、元件老化等都会影响最终的输出精度。 为了减少这些误差,可以采取以下措施: 1. **优化滤波器设计**:选择更合适的滤波器参数,比如提高滤波器的阶数或者使用更复杂的滤波器结构,以更好地抑制高频噪声。 2. **改进PWM信号质量**:确保PWM信号的高低电平稳定,减少非线性效应的影响。 3. **采用温度补偿和校准技术**:定期对电路进行校准,补偿环境温度变化带来的影响。 #### 电路实现方法 文中提出了两种从PWM到0~5V电压输出的电路设计方案: 1. **基本电路设计**:第一种方案相对简单,主要依靠低通滤波器去除PWM信号中的高频谐波成分。这种方法的优点是电路结构简单,但可能在精度方面有所牺牲。 2. **高精度电路设计**:第二种方案通过更加精细的滤波处理和电路设计来提高转换精度。这种方法可能需要更复杂的电路结构和更高质量的元器件,但在实际应用中能够获得更高的转换精度。 #### 结论 基于PWM的电压输出DAC电路设计不仅能够有效降低成本,而且还能够实现较高的转换精度。通过对PWM信号的理论分析、滤波器的设计以及误差控制等方面的研究,可以进一步优化电路性能,满足不同应用场景的需求。未来的研究还可以探索更多提高转换精度的方法,以及如何在保持低成本的同时进一步简化电路设计。
2025-07-21 14:33:55 263KB
1
MAX232负电压输出超声波控制电路,收发电路都有,已经实际试验过,可以使用
2025-05-11 18:53:33 130KB max232
1
T型三电平逆变器SVPWM仿真研究:七段式时间分配下的五电平线电压输出与LCL滤波器对称三相电压电流波形的控制策略,T型三电平逆变器SVPWM仿真研究:七段式时间分配下的五电平线电压输出与LCL滤波器对称三相电压电流波形的控制策略,T型三电平逆变器仿真(SVPWM)电压空间矢量脉冲宽度调制;平衡负载均衡,不平衡负载控制。 SVPWM搭建全部成型,采取七段式时间分配,输出五电平线电压波形; 加设LCL滤波器,可以得到对称三相电压,电流波形。 ,T型三电平逆变器仿真; SVPWM; 七段式时间分配; 五电平线电压波形; LCL滤波器; 对称三相电压电流波形。,好的,根据您提供的关键信息,为您提炼一个标题: T型三电平逆变器SVPWM仿真研究:五电平线电压波形与LCL滤波器应用 这个标题在35个字以内,且没有包含您的提示词要求信息。
2025-04-08 11:16:18 2.34MB
1
质子交换膜燃料电池(PEMFC)是一种先进的电化学能源转换设备,广泛应用于电动汽车、便携式电源系统以及分布式发电领域。在Simulink环境中构建PEMFC模型可以帮助我们理解和优化这种燃料电池的工作性能。本模型包含两个独立部分:静态模型和动态模型。 静态模型主要关注在稳态条件下的燃料电池性能,它不考虑时间变化因素,适用于初步分析和设计。通过这个模型,我们可以计算出在一定操作条件下电池的输出电压。输出电压是PEMFC的关键参数之一,它直接影响到系统的整体效率。此外,静态模型还可以评估燃料电池的输出功率,这决定了其在实际应用中的可用能量。 动态模型则更深入地模拟了PEMFC内部的物理和化学过程,考虑了如反应速率、质子传导、气体扩散等因素随时间的变化。动态模型能够计算出效率、产热量、产水量以及氢氧消耗速率等动态参数。这些参数对于理解燃料电池在不同工况下的运行状态至关重要,例如在冷启动、加速或负载变化时的响应。 效率是评价燃料电池性能的重要指标,它表示实际输出功率与理论最大功率之比。产热量反映了燃料电池工作过程中的能量损失,而产水量则揭示了水管理问题,因为水分平衡对于维持质子交换膜的湿润状态和保持良好的电导率非常关键。氢氧消耗速率则可以用来评估燃料电池的燃料利用率和可持续性。 模型附带的参考公式和文献资料为深入学习和验证模型的准确性提供了基础。参考公式可能涵盖了电极反应动力学、电解质传导、气体扩散等基本过程,而参考文献则可能包含了最新的研究进展和技术细节,有助于读者进一步了解PEMFC的工作原理和技术挑战。 在进行毕业设计时,使用这样的Simulink模型能帮助学生全面掌握PEMFC的工作机制,并通过调整模型参数来探索优化策略。例如,可以通过改变温度、压力、气体纯度等操作条件,观察对性能参数的影响,从而提出改进措施。 这个质子交换膜燃料电池的Simulink模型是一个强大的工具,不仅提供了理论知识的学习,也支持了实际操作和仿真研究,对于理解燃料电池的工作机理、优化设计以及进行科研项目具有重要意义。通过深入学习和使用这个模型,无论是学生还是研究人员,都能在燃料电池技术领域获得宝贵的经验和洞见。
2024-07-21 10:39:41 174KB 毕业设计
1
以下是滑差功率恢复方案的一部分: 我制作了一个三相桥式整流器来将三相输入电压转换为直流。然后整流器的输出与三相滤波器一起连接到三相逆变器。我无法设计一个滤波器来获得 50 的电压输出hz,三相总谐波失真小于 5%。
2023-02-25 14:02:48 11KB matlab
1
利用电压输出DAC实现真正的16位性能不仅要求选择适当的DAC,而且要求选择适当的配套支持器件。针对精密16数模转换应用,本电路使用AD5542A/AD5541A电压输出DAC、ADR421基准电压源以及用作基准电压缓冲的AD8675 超低失调运算放大器,提供了一款低风险解决方案。
2022-08-21 19:46:29 195KB 数据转换
1
内附原理图,stm32f103战舰开发板,测量功率因数,过流检测,输出任意值电压可调代码。这是几个月的结果,给老师检查过,功率因数0.9999,输出电压27.5V-42V任意值可调,误差在0.02V以内。能较好的完成题目要求
2022-04-18 11:58:48 10.65MB stm32f103zet switching po
1