单片机程控电压源是一种基于微控制器(MCU)的智能电源系统,它能够根据预设的程序或用户输入来精确控制输出电压。在这个设计中,AT89S52单片机作为核心控制器,负责整个系统的逻辑运算和电压调节。设计的主要目标是创建一个精度高、稳定性好且操作简便的数控直流电源。 该电源系统采用8位精度的DA转换器DAC0832,将单片机产生的数字信号转换为模拟电压,这一过程对于实现精确的电压控制至关重要。三端可调稳压器LM350则用来稳定输出电压,它的特点是输出电压范围广,能提供+1.4V至+9.9V的连续可调电压,并且具有10mV的低纹波,确保了电源的高精度。UA741运算放大器被用作放大器,进一步提升电压调节的性能。 设计中,用户可以通过5个按键进行电压设定,这5个按键提供了三种调整模式:设定值调整、微调(步进量0.1V)和粗调(步进量1V)。输出电压值通过共阴极三位一体的数码管进行显示,这种显示方式能直观地显示出三位数及一位小数的电压值,例如5.90V。电源系统还包含12V和5V的自供电设计,以确保整个电路的正常运行。 在工作原理上,MCU通过控制DA转换器的输出,此电压经过运算放大器放大后,作为LM350的参考电压。实际输出电压由LM350产生,实现了对输出电压的精确控制。时钟电路、复位电路、键盘接口电路、显示接口电路、D/A转换电路以及电源电路等各个单元电路协同工作,保证了系统的稳定性和高效性。 与传统的稳压电源相比,单片机程控电压源具有诸多优点,如操作便捷、电源稳定性高、输出电压数值采用数码显示,提高了设置的精度和便利性。在方案选择时,考虑到不同方案的数控部分、输出部分和显示部分的性能和成本,最终确定了当前的设计。 在单元电路工作原理部分,时钟电路为单片机提供稳定的工作时序,复位电路确保系统启动时处于已知状态,键盘接口电路允许用户与系统交互,显示接口电路则负责电压值的显示。D/A转换电路是实现电压控制的关键,电源电路则为整个系统提供所需电压,包括稳压器78L12和79L12等元件。 总体来说,单片机程控电压源是一种结合了现代电子技术和计算机控制的先进电源系统,尤其适用于需要高精度电压输出的电子设备和实验环境,解决了传统电源在精确调整和稳定性方面的不足。随着科技的进步,这类电源系统在各种工业和科研领域中的应用将越来越广泛。
2025-06-19 01:03:55 959KB
1
内容概要:本文深入探讨了基于模块化多电平换流器(MMC)的电压源换流器控制器的设计与优化方法。首先介绍了MMC的基本概念及其优势,如输出谐波少、开关频率低等。接着详细讲解了PI控制算法的应用,包括比例和积分项的作用以及如何通过代码实现PI控制。此外,还讨论了电容电压均衡算法、闭环控制策略、环流抑制技术和PWM生成环节的时间对齐问题。文中提供了多个代码示例,涵盖Python、C、Verilog等多种编程语言,帮助读者更好地理解和实践相关技术。 适合人群:从事电力电子研究的技术人员、高校师生及相关领域的研究人员。 使用场景及目标:适用于需要深入了解MMC控制器工作原理和技术细节的人士,旨在提高他们对该领域的认知水平和解决实际问题的能力。 其他说明:文章不仅涉及理论知识,还包括大量实用的代码片段,便于读者动手实践。同时强调了控制算法与硬件实现之间的紧密联系,指出许多容易忽视但至关重要的细节。
2025-06-18 16:01:14 897KB
1
stm32数控电压源仿真proteus
2025-05-06 16:06:35 24KB stm32 proteus
1
在电子电路设计与分析中,Multisim是一款广泛使用的虚拟实验室软件,它允许工程师们在计算机上模拟真实电路的行为。本主题聚焦于Multisim中的一个重要功能——受控源的仿真,特别是电流控制电压源(Current-Controlled Voltage Source,简称CCVS)。 电流控制电压源是一种特殊的电压源,其输出电压不仅依赖于自身的电压特性,还受到通过它的或与其关联的电流的影响。在电路设计中,这种类型的源可以用于模拟复杂的非线性元件或者创建自定义的电路行为。 在Multisim中,仿真电流控制电压源的步骤如下: 1. **打开Multisim**:首先启动Multisim软件,创建一个新的电路工作区。你可以选择“文件”>“新建”来开始一个新的设计。 2. **添加CCVS元件**:在元件库中找到电流控制电压源,通常位于“Sources”类别下。双击或者拖动CCVS到工作区,然后放置在合适的位置。 3. **配置CCVS**:双击放置的CCVS元件,弹出属性对话框。在这里,你可以设定控制电流与输出电压之间的关系,这通常是一个增益系数。例如,如果增益为1,输出电压将是控制电流的1倍。 4. **连接电路**:连接CCVS到电路的其他部分。通常,一个电流源会连接到CCVS的控制端,而CCVS的输出端则连接到负载或其他元件。 5. **设置仿真参数**:在“Simulation”菜单中选择合适的仿真类型(如DC分析、AC分析或Transient分析),并设置适当的边界条件,如时间范围和步长。 6. **运行仿真**:点击“Run Simulation”开始仿真。Multisim将根据你的电路和设置计算电流控制电压源的动态行为。 7. **分析结果**:仿真完成后,可以使用Multisim的内置工具,如波形图或仪表,查看和分析电流控制电压源的输出电压与输入电流的关系。 8. **调整和优化**:根据仿真结果,可能需要调整CCVS的增益或电路连接,以达到期望的设计性能。 9. **保存和分享**:完成仿真后,别忘了保存你的工作,可以使用`.ms14`格式保存电路文件,以便日后继续编辑或与他人分享。 在提供的文件名"Multisim受控源的仿真.ms14"和"电流控制电压源仿真.ms14"中,很可能包含了具体的电路设计和仿真设置。这些文件可以通过Multisim软件打开,以便查看和分析电路的行为。 总结来说,电流控制电压源在Multisim中的仿真是一项关键技能,它能帮助设计者理解和预测电路在不同条件下的行为。通过熟悉这个工具,工程师们可以在设计阶段避免实际硬件试验的复杂性和成本,提高电路设计的效率和准确性。
2025-04-14 16:11:00 149KB
1
在A/D和D/A转换器、数据采集系统以及各种测量设备中,都需要高精度、高稳定性的基准电压源,并且基准电压源的精度和稳定性决定了整个系统的工作性能。电压基准源主要有基于正向VBE的电压基准、基于齐纳二极管反向击穿特性的电压基准、带隙电压基准等多种实现方式,其中带隙基准电压源具有低温度系数、高电源抑制比、低基准电压等优点,因而得到了广泛的应用。 本文在基于传统带隙电压基准源原理的基础上,采用电流反馈、一级温度补偿等技术,同时在电路中加入启动电路,设计了一个高精度、输出可调的带隙基准电压源,并在SMIC 0.25μm CMOS工艺条件下对电路进行了模拟和仿真。 1 带隙基准电压源工作原理与传统
2025-04-14 14:07:53 195KB 电源技术
1
柔性直流输电仿真模型,及基于电压源的直流输电技术仿真。采用simulink编程,直观展示各级电压电流。 The simulation model of flexible DC transmission and the simulation of DC transmission technology based on voltage source. Using Simulink programming, the voltage and current at all levels can be displayed directly
2024-06-12 10:27:25 123KB matlab
非隔离双向DC DC变换器 buck-boost变换器仿真 输入侧为直流电压源,输出侧接蓄电池 模型采用电压外环电流内环的双闭环控制方式 正向运行时电压源给电池恒流恒压充电,反向运行时电池放电维持直流侧电压稳定 matlab simulink仿真模型 ~
2024-04-08 16:50:46 179KB matlab
1
三相电压源型逆变器Simulink仿真,SVPWM初学者必备基础知识,电压电流双环控制,SVPWM生成算法,有注释,通俗易懂。适合逆变器初学者学习,离网控制,电压等级380V,可模拟负载切换。
2024-01-04 19:36:48 61KB
1
深刻理解电压源和电流源及其等效变换的概念。熟练掌握节点电压法、叠加原理、等效电压源定理。了解负载获取最大功率的条件。
2023-04-14 16:21:15 63KB 电压源 电流源 等效变换 文章
1
基于-单片机数控电压源课程设计报告毕业设计论文.doc
1