内容概要:本文详细介绍了YOLOv11目标检测算法的改进,特别是引入了来自UNetv2的多层次特征融合模块——SDI(Selective Deformable Integration)。YOLOv11在保持高速推理的同时,通过采用EfficientNet主干网络、PANet和FPN Neck模块及多种注意力机制,显著提升了检测精度。SDI模块通过选择性融合不同尺度特征、结合可变形卷积技术,增强了细节信息的提取,提高了多尺度特征融合能力,改进了小目标检测精度。实验结果显示,YOLOv11在COCO和VOC数据集上的mAP分别从40.2%提升至43.7%、从77.5%提升至80.3%,且FPS保持稳定。; 适合人群:对目标检测算法有一定了解的研究人员、工程师及深度学习爱好者。; 使用场景及目标:①了解YOLOv11的创新技术和优化方向;②掌握SDI模块的工作原理及其在目标检测中的应用;③研究多层次特征融合、可变形卷积等技术对模型性能的影响。; 其他说明:本文不仅展示了YOLOv11的技术细节,还通过实验验证了SDI模块的有效性,为未来目标检测算法的发展提供了新的思路。建议读者结合实际应用场景,深入研究SDI模块的实现与优化方法。
2025-06-20 10:09:21 17KB 目标检测
1
《基于多特征融合模型音乐情感分类器的实现》 在当今数字时代,音乐与人们的生活紧密相连,而情感分析在音乐领域中具有重要的应用价值。本文将深入探讨一个名为"FusionModel_MusicEmotionClassifier"的项目,它利用Python编程语言实现了一种多特征融合模型,用于对音乐的情感进行精准分类。 一、音乐情感分类简介 音乐情感分类是将音乐按照其传达的情绪状态进行划分,例如快乐、悲伤、紧张或放松等。这一技术广泛应用于音乐推荐系统、情感识别研究、甚至心理疗法等领域。通过理解和解析音乐中的情感,可以提升用户体验,帮助用户找到符合特定情绪的音乐。 二、Python在音乐分析中的作用 Python因其丰富的库和简洁的语法,成为数据科学和机器学习领域的首选语言。在音乐分析中,Python的库如librosa、MIDIutil、pydub等提供了处理音频数据的强大工具。这些库可以帮助我们提取音乐的节奏、旋律、音色等特征,为情感分类提供基础。 三、多特征融合模型 "FusionModel_MusicEmotionClassifier"的核心在于多特征融合,它结合了多种音乐特征以提高分类性能。这些特征可能包括: 1. 频谱特征:如短时傅立叶变换(STFT)、梅尔频率倒谱系数(MFCC)等,反映音乐的频域特性。 2. 时序特征:如节奏、拍子等,揭示音乐的动态变化。 3. 情感标签:如歌词情感分析,尽管音乐情感主要通过听觉感知,但歌词也可以提供额外的线索。 4. 乐曲结构:如段落结构、主题重复等,这些信息有助于理解音乐的整体情感走向。 四、模型训练与评估 该模型可能采用了深度学习框架如TensorFlow或PyTorch来构建神经网络。常见的架构包括卷积神经网络(CNN)和循环神经网络(RNN),它们擅长处理序列数据,尤其是LSTM和GRU单元,能够捕捉音乐信号的长期依赖性。模型训练过程中,通常会使用交叉验证和早停策略来优化模型性能,防止过拟合。 五、应用场景 1. 音乐推荐:根据用户当前的情绪状态推荐相应音乐,提升用户体验。 2. 情感识别:在电影、广告等多媒体制作中,自动选择匹配情感的背景音乐。 3. 音乐治疗:帮助心理治疗师理解音乐对患者情绪的影响。 4. 创作辅助:为音乐创作者提供灵感,生成特定情感色彩的音乐片段。 六、项目实践 "FusionModel_MusicEmotionClassifier-master"包含了完整的项目源代码和数据集。通过阅读源码,我们可以学习如何从音频文件中提取特征,构建和训练模型,以及评估分类效果。对于想要深入理解音乐情感分析和机器学习实践的开发者来说,这是一个宝贵的资源。 总结,"FusionModel_MusicEmotionClassifier"是一个综合运用Python和多特征融合技术的音乐情感分类项目,它的实现揭示了音乐情感分析的复杂性和潜力,同时也为我们提供了一个研究和学习的优秀实例。通过不断地迭代和优化,未来这一领域的技术将更加成熟,为音乐与人类情感的交互打开新的可能。
2025-05-19 12:02:49 112.43MB Python
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1
在使用深度学习模型研究遥感影像地物分类问题时,某些地物的遥感影像可用于训练的样本很少。同时,多样化的遥感影像获取方式产生了大量不同空间分辨率的多模态遥感影像。融合这些多模态遥感影像,弥补样本量少导致分类精度低的缺陷,是小样本的遥感影像高精度分类领域中亟待解决的问题。针对上述问题,提出了考虑两种空间分辨率遥感影像相关关系的融合分类方法。首先,使用两个并行的深度学习网络分别提取两种空间分辨率影像的高层特征;其次,将提取到的高层特征通过融合方法进行融合;最后,得到融合后的高层特征作为输入,训练整个融合分类模型。实验表明,不同融合策略的分类精度不同,本文提出的基于高层特征级别的融合策略可以有效提高分类精度。
2024-07-01 16:53:28 3.2MB 图像处理 深度学习
1
"多模态特征融合的遥感图像语义分割网络" 本文介绍了一种多模态特征融合的遥感图像语义分割网络,称为MMFNet。该网络能够融合 IRRG(Infrared、Red、Green)图像和 DSM(Digital Surface Model)图像,提取融合后的特征,并使用残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块提取跳跃连接的多尺度特征。 MMFNet 网络的架构主要包含以下几个部分: 1. 编码器:使用双输入流的方式同时提取 IRRG 图像的光谱特征和 DSM 图像的高度特征。 2. 解码器:使用残差解码块(Residual Decoding Block, RDB)提取融合后的特征,并使用密集连接的方式加强特征的传播和复用。 3. 复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块:提取跳跃连接的多尺度特征。 实验结果表明,MMFNet 网络在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的 Vaihingen 和 Potsdam 数据集上取得了 90.44%和 90.70%的全局精确度,相比较与 DeepLabV3+、OCRNet 等通用分割网络和 CEVO、UFMG_4 等同数据集专用分割网络具有更高的分割精确度。 本文的贡献在于: 1. 提出了多模态特征融合的遥感图像语义分割网络,能够融合 IRRG 图像和 DSM 图像,提高了遥感图像语义分割的精确度。 2. 引入了残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块,提高了网络的表达能力和泛化能力。 本文提出了一个多模态特征融合的遥感图像语义分割网络,能够提高遥感图像语义分割的精确度和泛化能力,有助于国土资源规划、智慧城市等领域的应用。
2024-07-01 16:47:59 1.49MB
1
针对全卷积神经网络多次下采样操作导致的道路边缘细节信息损失和道路提取不准确的问题,本文提出了多尺度特征融合的膨胀卷积残差网络高分一号影像道路提取方法。首先,通过目视解译的方法制作大量的道路提取标签数据;其次,在残差网络ResNet-101的各个残差块中引入膨胀卷积和多尺度特征感知模块,扩大特征点的感受野,避免特征图分辨率减小和道路边缘细节特征的损失;然后,通过叠加融合和上采样操作将各个尺寸的道路特征图进行融合,得到原始分辨率大小的特征图;最后,将特征图输入Sigmoid分类器中进行分类。实验结果表明:本文方法的提取精度优于经典全卷积神经网络模型,准确率达到了98%以上,有效保留了道路的完整性及其边缘的细节信息。
2024-05-04 08:34:44 6.54MB 道路提取 高分一号 残差网络
1
自己整理的YOLO模型的各种改进文献 包括添加注意力模块 改进骨干网络 改进特征融合 改进输出层等
2024-04-28 16:41:49 186.13MB 网络 网络
1
现有的微博情感分析方法已经注意到了微博文本与图片之间的互补作用,但较少注意用户情感表达的差异和微博内容中除文字之外的特征,为此提出一种多特征融合的图文微博情感分析方法。首先构建文本情感分类模型,将对情感具有很好指示作用的内容特征和用户特征与微博句子进行融合, 然后构造了基于参数迁移和微调的图片情感分类模型。最后设计特征层和决策层融合的方法,将文本和图片情感分类模型进行融合。实验结果表明,内容特征和用户特征有效增强了模型捕捉情感语义的能力,并在多项性能指标上都取得了很好的效果, 构建的图文情感分类模型和融合方法可获得更好的性能。
2024-04-03 17:00:25 1.86MB 情感分析 多特征融合
1
提出了一种特征权值与尺度自适应的核相关跟踪算法。提取目标搜索区域的方向梯度直方图(HOG)特征和颜色名(CN)特征进行自适应权值融合,通过融合特征的相关滤波响应图的峰值找到目标位置;利用权值较大特征的相关滤波响应图的峰值和峰值旁瓣比的乘积作为尺度评估依据,对目标尺度进行粗略估计和精确估计,从而得到目标的最佳尺度。通过在目标跟踪标准(OTB-2013)数据集上的仿真实验,结果表明相比核相关滤波跟踪算法以及其他5种跟踪算法,所提算法在跟踪精度和成功率方面都有明显提高,跟踪精度为0.799,成功率为0.723,能较好地适应目标尺度的变化。
2024-01-24 21:59:42 5.56MB 机器视觉 目标跟踪 特征融合
1
提出了一种融合全局和局部深度特征(GLDFB)的视觉词袋模型。通过视觉词袋模型将深度卷积神经网络提取的多个层次的高层特征进行重组编码并融合,利用支持向量机对融合特征进行分类。充分利用包含场景局部细节信息的卷积层特征和包含场景全局信息的全连接层特征,完成对遥感影像场景的高效表达。通过对两个不同规模的遥感图像场景数据集的实验研究表明,相比现有方法,所提方法在高层特征表达能力和分类精度方面具有显著优势。
2023-11-02 16:02:16 14.8MB 深度卷积 特征融合
1