提出了一种基于模拟退火(SA)算法和最小二乘法支持向量机(LS-SVM)选择可见-近红外光谱特征波长的新方法(SA-LS-SVM)。该方法用LS-SVM作为识别器, 用识别率作为SA的目标函数, 提取合适的特征波长数以及对应的特征波长。3种不同品牌的润滑油可见-近红外光谱的特征波长分别用SA-LS-SVM, 主成分回归分析(PCA)和偏最小二乘法(PLS)进行处理, 提取特征波长或主成分, 然后结合反向传播人工神经网络(BP-ANN)对各种处理方法进行识别预测。结果发现, SA-LS-SVM只需从751个数据光谱中提取4个特征波长, 就可以使三种品牌润滑油的识别率达到了100%, 而其他所有的方法发现预测率都达不到100%, 由此验证了SA-LS-SVM的优越性。实验结果表明, SA-LS-SVM不仅能有效地减少建模的变量数, 而且可以提高预测精度。
1
基于自标度数据的偏最小二乘(PLS)回归系数是一个重要变量的理论,云永欢等提出了一种新的变量选择策略&迭代变量子集优化(IVSO)。在这项工作中,每个子模型中产生的回归系数都被规范化以消除影响。在每一轮迭代中,将从子模型中得到的各变量的回归系数相加,以评估其重要性水平。采用加权二元矩阵抽样(WBMS)和序贯加法两步法,以竞争的方式逐步、温和地消除非信息变量,降低重要变量丢失的风险。此外,还考虑到,通过交叉验证产生的潜在变量的最佳数量将对回归系数产生很大的差异,有时这种差异甚至可以变化几个数量级。
1
在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究 古文君 1 ,田有文 1* ,张 芳 1 ,赖兴涛 1 ,何 宽 1 ,姚 萍 1 ,刘博林 2)
2019-12-21 18:51:02 725KB 特征波长
1