一种用于可见-近红外光谱特征波长选择的新方法

上传者: 38641150 | 上传时间: 2022-05-05 17:34:16 | 文件大小: 964KB | 文件类型: PDF
提出了一种基于模拟退火(SA)算法和最小二乘法支持向量机(LS-SVM)选择可见-近红外光谱特征波长的新方法(SA-LS-SVM)。该方法用LS-SVM作为识别器, 用识别率作为SA的目标函数, 提取合适的特征波长数以及对应的特征波长。3种不同品牌的润滑油可见-近红外光谱的特征波长分别用SA-LS-SVM, 主成分回归分析(PCA)和偏最小二乘法(PLS)进行处理, 提取特征波长或主成分, 然后结合反向传播人工神经网络(BP-ANN)对各种处理方法进行识别预测。结果发现, SA-LS-SVM只需从751个数据光谱中提取4个特征波长, 就可以使三种品牌润滑油的识别率达到了100%, 而其他所有的方法发现预测率都达不到100%, 由此验证了SA-LS-SVM的优越性。实验结果表明, SA-LS-SVM不仅能有效地减少建模的变量数, 而且可以提高预测精度。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明