CMOS版图设计的匹配问题,特别适合刚开始画版图的童鞋,好资料,请支持
2025-11-24 14:48:09 1.98MB CMOS版图设计
1
两级运算放大器电路版图设计的全过程,涵盖从原理图设计到最终仿真的各个环节。设计采用了Cadence 618软件和TSMC 18nm工艺,旨在实现低频增益87dB、相位裕度80°、单位增益带宽积GBW 30MHz等性能指标。文中不仅阐述了电路的工作原理和设计推导,还包括具体的版图规划、绘制方法及其验证步骤。最终,该设计成功通过DRC和LVS验证,形成了面积为80μm×100μm的完整版图,并附有详尽的30页PDF文档记录整个设计流程。 适用人群:从事模拟集成电路设计的专业人士,尤其是对两级运算放大器设计感兴趣的工程师和技术研究人员。 使用场景及目标:适用于希望深入了解两级运算放大器设计原理及其实现过程的学习者;也可作为实际项目开发时的技术参考资料,帮助解决具体的设计难题。 其他说明:提供的包安装文件便于用户快速部署设计方案,加速产品化进程。
2025-10-31 14:32:20 2.28MB Cadence 工艺设计
1
1、版图流程 通常一个正向的版图流程是:拿到一个设计完成的线路后,开始总体版图的布局,然后根据布局,开始lay模块。当完成所有模块后拼接总体版图,并通过版图验证以及后端仿真。最后完成版图输出。 2、总体版图布局 其实不同类型的电路有不同的版图布局。大都应该具备这样的原则:基准电路应该远离发热源,并且应该在芯片的中心处。噪声大的模块远离基准和易受干扰的模块。合理的布局模块,使他们之间的走线尽量的短,有数字模块的可以考虑把数字模块摆放在发热模块和敏感模块之间。一些对称电路的版图布局应该同样具有对称性。
2025-09-08 08:39:05 1.98MB CMOS版图设计
1
内容概要:本文详细介绍了Lumerical FDTD Mode建模、Device Heat仿真、Ledit与GDS版图代画、Matlab应用、Euler弯曲和椭圆弯曲结构、数字超材料及其优化算法在光子学和微电子学领域的应用。首先,Lumerical FDTD Mode作为一种电磁波模拟技术,能够模拟光子在微纳结构中的传播行为,为设计新型光子器件提供理论支持。其次,Device Heat仿真是解决电子设备散热问题的重要手段,有助于优化散热设计。接着,Ledit作为一款EDA工具,可用于绘制和编辑集成电路版图,并能生成符合要求的GDS版图。Matlab则在数据分析和处理方面发挥了关键作用。此外,文中还探讨了Euler弯曲、椭圆弯曲等弯曲结构对光子传输的影响,以及数字超材料的优化设计方法。最后,文章讲述了特殊图案的GDS模型导出流程,确保其精度和可靠性。 适合人群:从事光子学、微电子学及相关领域的研究人员和技术人员,尤其是对建模、仿真和优化感兴趣的从业者。 使用场景及目标:适用于希望深入了解Lumerical FDTD Mode建模、Device Heat仿真、Ledit与GDS版图代画、Matlab应用、弯曲结构设计及数字超材料优化的研究人员和技术人员。目标是掌握这些关键技术,提高设计和优化能力,推动相关领域的创新发展。 其他说明:本文不仅提供了详细的理论介绍,还结合实际案例进行了深入浅出的讲解,使读者能够在实践中更好地理解和应用所学知识。
2025-09-07 22:03:56 654KB Lumerical FDTD Mode
1
两MOS管源端相同时中心对称实例 7)差分的匹配版图(一)
2025-08-01 09:55:14 11.15MB IC版图 集成电路设计】
1
基于Cadence 618的两级运算放大器电路版图设计(低频增益达87dB,GBW 30MHz,详尽原理图及仿真过程),基于Cadence 618的两级运算放大器电路版图设计,涵盖工艺细节、仿真及安装指南,详尽设计文档和仿真报告,低频增益达87dB,单位增益带宽积GBW 30MHz。,两级运算放大器电路版图设计 cadence 618 电路设计 版图设计 工艺tsmc18 低频增益87dB 相位裕度80 单位增益带宽积GBW 30MHz 压摆率 16V uS 有版图,已过DRC LVS,面积80uX100u 包安装 原理图带仿真过程,PDF文档30页,特别详细,原理介绍,设计推导,仿真电路和过程仿真状态 ,两级运算放大器; 电路版图设计; 工艺tsmc18; 性能指标(低频增益、相位裕度、GBW、压摆率); 版图; DRC LVS验证; 面积; 包安装; 原理图; 仿真过程; PDF文档。,基于TSMC18工艺的87dB低频增益两级运算放大器版图设计及仿真研究
2025-06-22 22:27:54 5.6MB
1
"TSMC工艺下两级运算放大器电路版图设计与仿真详解",两级运算放大器电路版图设计 cadence 618 电路设计 版图设计 工艺tsmc18 低频增益87dB 相位裕度80 单位增益带宽积GBW 30MHz 压摆率 16V uS 有版图,已过DRC LVS,面积80uX100u 包安装 原理图带仿真过程,PDF文档30页,特别详细,原理介绍,设计推导,仿真电路和过程仿真状态 ,两级运算放大器; 电路版图设计; 工艺TSMC18; 频率增益; 相位裕度; 单位增益带宽积GBW; 压摆率; 版本控制; 原理图; 仿真过程; PDF文档。,基于TSMC18工艺的87dB低频增益两级运算放大器版图设计及仿真研究
2025-06-18 17:22:27 950KB
1
ic 版图设计经验总结 ic 版图设计是集成电路(IC)设计的重要步骤之一。一个良好的版图设计可以确保芯片的可靠性、性能和制造效率。在这里,我们总结了 ic 版图设计的经验总结,包括版图设计的基本原则、版图设计的步骤、版图设计的注意事项和版图设计的技巧。 版图设计的基本原则 1. 版图设计的目标是实现芯片的可靠性、性能和制造效率。 2. 版图设计应该遵守工艺规则和设计规则。 3. 版图设计应该考虑到芯片的电气特性和热特性。 4. 版图设计应该尽量减少芯片的面积和功耗。 版图设计的步骤 1. 分析电路图,了解电路的工作原理和性能要求。 2. 选择合适的工艺和设计规则。 3. 进行版图设计,包括设备的布局、连线和布线。 4. 检查和验证版图设计的正确性和可靠性。 版图设计的注意事项 1. 版图设计应该考虑到芯片的热特性和电气特性。 2. 版图设计应该遵守工艺规则和设计规则。 3. 版图设计应该尽量减少芯片的面积和功耗。 4. 版图设计应该考虑到芯片的可靠性和可维护性。 版图设计的技巧 1. 使用合适的设计工具和软件。 2. 合理安排设备的布局和布线。 3. 使用合适的连接方式和线宽。 4. 考虑到芯片的热特性和电气特性。 ic 版图设计经验总结 1. 查看捕捉点设置是否正确,08 工艺为 0.1,06 工艺为 0.05,05 工艺为 0.025。 2. Cell 名称不能以数字开头,否则无法做 DRACULA 检查。 3. 布局前考虑好出 PIN 的方向和位置。 4. 布局前分析电路,完成同一功能的 MOS 管画在一起。 5. 对两层金属走向预先订好,一个图中栅的走向尽量一致,不要有横有竖。 6. 对 pin 分类,vdd、vddx 注意不要混淆,不同电位(衬底接不同电压)的 n 井分开。 7. 在正确的路径下(一般是进到 ~/opus)打开 icfb。 8. 更改 cell 时查看路径,一定要在正确的 library 下更改,以防 copy 过来的 cell 是在其他的 library 下,被改错。 9. 将不同电位的 N 井找出来。 10. 更改原理图后一定记得 check 和 save。 11. 完成每个 cell 后要归原点。 12. DEVICE 的个数是否和原理图一至(有并联的管子时注意);各 DEVICE 的尺寸是否和原理图一至。 13. 如果一个 cell 调用其它 cell,被调用的 cell 的 vssx、vddx、vssb、vddb 如果没有和外层 cell 连起来,要打上 PIN,否则通不过 diva 检查。 14. 尽量用最上层金属接出 PIN。 15. 接出去的线拉到 cell 边缘,布局时记得留出走线空间。 16. 金属连线不宜过长。 17. 电容一般最后画,在空档处拼凑。 18. 小尺寸的 mos 管孔可以少打一点。 19. LABEL 标识元件时不要用 y0 层,mapfile 不认。 20. 管子的沟道上尽量不要走线;M2 的影响比 M1 小。 21. 电容上下级板的电压注意要均匀分布;电容的长宽不宜相差过大。 22. 多晶硅栅不能两端都打孔连接金属。 23. 栅上的孔最好打在栅的中间位置。 24. U 形的 mos 管用整片方形的栅覆盖 diff 层,不要用 layer generation 的方法生成 U 形栅。 25. 一般打孔最少打两个。 26. Contact 面积允许的情况下,能打越多越好,尤其是 input/output 部分,因为电流较大。 27. 薄氧化层是否有对应的植入层。 28. 金属连接孔可以嵌在 diffusion 的孔中间。 29. 两段金属连接处重叠的地方注意金属线最小宽度。 30. 连线接头处一定要重叠,画的时候将该区域放大可避免此错误。 31. 摆放各个小 CELL 时注意不要挤得太近,没有留出走线空间。 32. Text2、y0 层只是用来做检查或标志用,不用于光刻制造。 33. 芯片内部的电源线/地线和 ESD 上的电源线/地线分开接;数模信号的电源线/地线分开。 34. Pad 的 pass 窗口的尺寸画成整数 90um。 35. 连接 Esd 电路的线不能断,如果改变走向不要换金属层。 36. Esd 电路中无 VDDX、VSSX,是 VDDB、VSSB。 37. PAD 和 ESD 最好使用 M1 连接,宽度不小于 20um;使用 M2 连接时,pad 上不用打 VIA 孔,在 ESD 电路上打。 38. PAD 与芯片内部 cell 的连线要从 ESD 电路上接过去。 39. Esd 电路的 SOURCE 放两边,DRAIN 放中间。 40. ESD 的 D 端的孔到 poly 的间距为 4,S 端到 poly 的间距为 0.2。 41. ESD 的 pmos 管与其他 ESD 或 POWER 的 nmos 管至少相距 70um 以上。 42. 大尺寸的 pmos/nmos 与其他 nmos/pmos(非 powermos 和 ESD)的间距不够 70um 时,但最好不要小于 50um,中间加 NWELL,打上 NTAP。 43. NWELL 和 PTAP 的隔离效果有什么不同?NWELL 较深,效果较好。 44. 只有 esd 电路中的管子才可以用 2*2um 的孔。怎么判断 ESD 电路?上拉 P 管的 D。
2025-05-19 10:02:39 37KB
1
3.5版图设计 版图设计是电路设计中非常重要的一个环节,版图设计的好坏直接决定了最终产品能否达到电 路设计者所期望的性能指标。本设计中的版图是基于新加坡特许半导体(Chartered)O.18pm CMOS 工艺库,在Cadence环境下使用Virtuoso设计完成。下文详细阐述了本论文版图设计中关注的要点 以及相关设计方法。 3.5.1 设计规则 1)版图的对称性 由于该VCO采用差分结构,因此版图的对称性非常重要。首先,在单个VCO中,若不能保证 对称性,则差分输出信号的相位会存在偏差,这会给后级电路(Divider)的工作造成不良影响。而 且,根据第二章所述,对称的输出波形可以降低闪烁噪声对相位噪声的影响。 输出Buffer、电流镜等电路中也同样要注重对称性的设计。尽管一些失配不可避免,但如果不 充分注意版图中的对称性,就可能产生大的失调电压。且对称性设计还可以抑制共模噪声和偶次非 线性效应121J。 版图匹配性设计主要考虑以下六方面原则14纠: a)结构相同。有源器件、电阻、电容、电感相互匹配时,其电路结构及工艺都需要相同。 b)等温线相同。器件的参数很多是对温度敏感的,所以匹配器件必须有相同的本地温度。大功 率器件会在芯片内作为一个热源散发热量,所以版图设计时尤其要注意将需要匹配的器件放在大功 率器件的等温线上。 c)尺寸形状相同。对于电阻版图设计而言,两个要求匹配的电阻需要采用相同的宽长比以及方 块数,如果电阻有拐角的话,就需要具有相同的拐角数,相同的每一段尺寸。对于MoS管版图设 计而言,可以将它们设计成具有不同并联数目的两个管子来得到一个比较精确的比值。 d)采用共质心结构。质心可以简单地理解为质量均匀点,共质心布局可以减小工艺上的随机误 差。 e)方向相同。由于各向异性的工艺步骤会引起工艺参数的不对称性,同时硅衬底本身也具有各 向异性的特性,因此,匹配器件采用方向相同的布局可以减小工艺带来的各项异性问题。 f)周边环境相同。通过添加虚拟器件可以使有用器件工作环境相同,可避免由于工作环境不同 导致的失配。 2)寄生效应 模拟集成电路设计中,寄生参数对电路性能会有较大的影响,在高频下尤其明显。因此,在版 图设计中,应尽量减小寄生效应。 在VCO的版图设计中,通常重点关注与谐振回路相关的部分。首先来看交叉耦合管。晶体管 多晶硅栅的电导率远低于铝线,因此多晶硅栅的寄牛电阻往往不能忽略。如果栅电阻较大,就相当 于在电路中加入了一个噪声源,这会恶化电路的噪声性能。采用折叠结构可以改善这种情况。如图 3.15所示,(a)图为一个宽长比为W/L的大尺寸MOS管,假设栅电阻为2R。(b)图中用两个宽长比 为W/2L的MOS并联来替代它,那么栅电阻就变成两个R的并联,即R/2,相差4倍。折叠式结构 还可以减小源/漏区与衬底之间的结电容。对于图3-15(a)qb晶体管,有 C肋=Css=WEC,+2(W+E)Cj. (3.10) 其中Cj是与结底部相关的下极板单位面积电容,Cj洲是由于结周边引起的侧壁单位长度电容。 对于图3.15(b)有 形 矽 c脚=二三■EC,+2(三■+e)c胁 z z (3.11) 31
2025-05-08 10:31:26 2.93MB CMOS
1
内容概要:本文档详细介绍了使用虚拟机环境下运行Cadence Virtuoso软件进行ASIC设计的基本流程,涵盖软件登陆、工艺库定义、原理图绘制及仿真、版图绘制、版图验证及后仿真等一系列实验操作步骤。文中针对各关键环节提供了详尽的指导,包括快捷方式的应用、各种设置的选择与调整方法,以及可能出现问题的解决办法。 适合人群:适合具备ASIC设计基础知识、有一定Cadence软件使用经验的研发人员,尤其是微电子学专业学生和科研工作者。 使用场景及目标:适用于希望掌握ASIC设计全过程的专业人士,目标在于深入理解和熟练运用Cadence平台的各项功能,提高设计效率与质量。文档不仅能够帮助初学者快速入门ASIC设计,还能作为资深设计师的技术参考手册。 其他说明:本教程采用的是版本11的VMware虚拟机及Cadence Virtuoso软件,操作过程中需要注意虚拟机环境配置、Cadence许可证申请等问题。此外,文档末尾附带了详细的DRC、LVS校验及PEX分析流程,这对于保障设计正确性和优化电路性能至关重要。
2025-04-21 19:25:04 3.46MB Cadence Virtuoso ASIC 版图设计
1