以预测矿井瓦斯相对涌出量为研究目的,运用缓冲算子理论,建立了灰色系统模型,并将该模型应用到某矿井的瓦斯涌出量预测分析中,对该矿历年来相对瓦斯涌出量进行了灰色生成,建立了灰色预测,对照精度检验可知,达到了一级精度,预测结果可靠。
2024-02-28 16:16:11 354KB 灰色理论 缓冲算子 瓦斯涌出量 GM(1
1
以预测矿井瓦斯相对涌出量为研究目的,通过灰色系统的建模、关联度分析及残差辨识为基础,建立了灰色系统理论模型,并将该模型应用到某矿瓦斯涌出量预测分析中,对该矿历年来相对瓦斯涌出量进行了灰色生成,建立了灰色预测系统;由后验差检验结果、对照精度检验等级可知,灰色系统预测矿井瓦斯涌出量的拟合精度好,预测结果正确可靠,反映出了矿井瓦斯涌出量的客观存在与发展态势.
2024-02-28 16:00:32 95KB 灰色理论 瓦斯涌出量 GM(1 1)模型
1
文中针对时间因素对GM(1,1)模型预测造成的影响引入了时间加权-新陈代谢GM(1,1)模型,并将该模型应用于建筑物的沉降预测,结果证明时间加权-新陈代谢GM(1,1)模型比传统的GM(1,1)模型的预测精度高,具有较高的参考价值。
2024-02-28 15:49:35 655KB 沉降观测 灰色理论 沉降预测 GM(1
1
【预测模型】灰色理论GM模型地区PM2.5预测【含Matlab源码 499期】.zip
2023-03-06 09:09:19 74KB
1
邓聚龙教授的灰色理论教材,阅读了一下,感觉挺好的,分享给大家
2022-12-03 23:46:05 2.66MB 灰色理论
1
常用的灰色预测有五种:  (1)数列预测,即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。  (2)灾变与异常值预测,即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。  (3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生在一年内某个特定的时区或季节的灾变预测。  (4)拓扑预测,将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点。  (5)系统预测. 通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。
2022-07-22 00:28:27 701KB 灰色理论
1
针对用BP神经网络进行预测时权值难以确定的问题,提出了一种基于将灰色理论与BP神经网络相结合的预测算法。采用数量研究法,选取重庆市某供电局1999年到2006年的售电量作为样本,利用不同的灰色模型对样本进行预测,再选出预测的最优值对BP网络进行训练,最后用已训练好的BP网络对样本数据进行预测。经实例预测表明:灰色理论与BP网络相结合的预测精度与单一的预测模型相比有了明显的改进,该算法在理论和实践应用中都是可行的,并为电力部门的生产运行和规划提供了重要的参考。
2022-04-20 15:10:35 771KB 行业研究
1
孟加拉巴拉普库利亚煤矿位于孟加拉国西北部,为一独立的半断陷冈瓦纳群含煤盆地。该矿主采的Ⅵ煤层为特厚煤层,煤层均厚36m。受矿井水文地质条件等因素影响,目前仅在南翼采区进行开采。根据煤矿Ⅵ煤一分层开采2000-2012年的涌水量实测资料,建立灰色理论模型并进行模型精度检验。在此基础上,利用灰色理论的预测方法,基于Matlab软件编程计算,对2013-2018年的矿井涌水量动态变化进行预测,并将模型预测值与实测资料进行对比。结果表明,所建立的灰色系统模型具有可靠性和适用性,涌水量预测成果可为矿井排水系统的设计提供依据。
2022-04-11 16:56:54 1.2MB 灰色理论 矿井涌水量 GM(1 1)模型
1
矿井工作面瓦斯涌出是一个动态不确定的过程,因此最新瓦斯涌出数据的研究至关重要,本文将灰色GM(1,1)模型瓦斯涌出量预测结果加入原始数列,对原始数据序列的信息进行更新,建立了矿井瓦斯涌出量GM(1,1)新陈代谢动态预测模型,采用残差检验法对该模型精度进行检验,其平均相对误差为3.861%,预测精度明显优于GM(1,1)模型,提高了灰色GM(1,1)模型预测瓦斯涌出量的精度。
1
煤层瓦斯含量是矿井瓦斯灾害防治的主要参数之一,影响其分布特征的地质因素有很多。利用灰色理论的灰色关联分析法对选取的8个影响煤层瓦斯含量的地质因素进行了分析,筛选出断距、埋深、基岩厚度以及挥发分4个主要影响因素,并将其作为BP神经网络模型的输入端建立了煤层瓦斯含量预测模型。对该预测模型进行训练与仿真检验,并与传统的多元线性回归预测方法进行比较分析。
1