深度学习模型的开发过程中,安全测试是确保模型在面对恶意输入和攻击时的稳定性和可靠性的关键环节。对于YOLOv11这样的高效目标检测模型,安全测试可以帮助我们识别和修复潜在的安全漏洞,提高模型的安全性。本文将详细介绍YOLOv11模型开发中的安全测试策略,并提供实际的代码示例。 安全测试是YOLOv11模型开发过程中的重要环节,它可以帮助我们识别和修复潜在的安全漏洞,提高模型的安全性。通过实施有效的安全测试策略,可以确保YOLOv11模型在实际应用中的安全性和可靠性。随着深度学习技术的不断发展,安全测试在模型开发中的应用将更加广泛和深入。通过实际的代码示例,我们可以看到安全测试在YOLOv11模型开发中的高效应用,从而提高开发效率和模型性能。
2025-10-26 13:59:55 102KB 安全测试 深度学习 模型开发
1
在无线通信安全领域,信道状态信息(CSI)分析与深度学习模型训练的结合为网络安全性带来了新的研究方向。当前,基于WiFi信号的非接触式键盘输入监测系统,以及用于网络安全审计与隐私保护的击键特征提取算法研究,正在成为热点。这些研究主要关注如何通过深度学习技术,实现对通过无线网络传输的数据包进行分析,并从中提取出击键行为的特征信息。 非接触式键盘输入监测系统能够通过WiFi信号的细微变化,捕捉用户在键盘上的敲击动作。由于每个人敲击键盘的方式具有唯一性,因此可以将这些信息作为区分不同用户击键行为的依据。此外,深度学习模型被用来训练系统,以识别和分类这些击键行为,提高系统的精确度和效率。 在击键行为的识别与分类过程中,深度学习模型能够处理来自信道状态信息的海量数据,并通过学习大量的击键样本数据,自动识别不同用户的击键模式。通过这种方式,系统不仅能够监控键盘输入活动,还能通过分析和比较击键特征,准确地识别出不同的用户。 该技术在网络安全审计和隐私保护方面有着重要应用。在审计过程中,该系统可以作为监控工具,及时发现非授权的键盘活动,进而采取措施保护敏感数据不被非法访问。同时,对于个人隐私保护来说,该技术能够阻止不法分子通过键盘记录器等方式非法获取用户的击键信息。 除了提供网络安全审计与隐私保护功能外,这些研究还促进了高精度击键位的实现。通过深度学习模型的训练,系统能够精确地定位每个击键动作,为未来提升无线网络安全和隐私保护水平提供了技术保障。 这些研究工作为无线通信安全领域的专家和技术人员提供了新的视角和解决方案。随着技术的不断进步和深度学习模型的持续优化,未来的网络安全和隐私保护技术将更加成熟和高效。
2025-10-25 20:52:23 7.59MB python
1
内容概要:本文详细介绍了在Pytorch环境下实现的一种基于深度学习模型的可学习小波变换方法。文中首先解释了小波变换的基本概念,包括离散小波变换(DWT)和连续小波变换(CWT),以及它们在信号处理和图像处理中的广泛应用。接着,重点讨论了如何将小波变换与深度学习相结合,在Pytorch框架下构建一个自适应优化算法框架。该框架能够在训练过程中自动从小波变换中学习到数据的最佳表示方式,并根据目标函数进行优化。文章还提供了一段简化的代码示例,演示了如何在实际项目中实现这一方法。最后,作者对未来的研究方向进行了展望,强调了这种方法在提高数据处理效率方面的巨大潜力。 适合人群:对深度学习和小波变换有一定了解的研究人员和技术开发者。 使用场景及目标:适用于需要对复杂信号或图像数据进行高精度分析和处理的应用场景,如医学影像分析、音频处理、地震数据分析等。目标是通过结合深度学习和小波变换的优势,提升数据处理的准确性和效率。 其他说明:本文不仅提供了理论上的探讨,还给出了具体的实现代码,有助于读者快速上手并在实践中验证所学内容。
2025-10-22 15:11:43 410KB
1
2025电赛预测无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip无线通信安全_信道状态信息分析_深度学习模型训练_击键行为识别与分类_基于WiFi信号的非接触式键盘输入监测系统_用于网络安全审计与隐私保护的击键特征提取算法研究_实现高精度击键位.zip 随着无线通信技术的迅速发展,无线网络的安全问题日益凸显。为了有效地保护网络安全,维护用户隐私,本研究聚焦于无线通信安全领域中的几个关键问题:信道状态信息分析、深度学习模型训练、击键行为识别与分类,以及基于WiFi信号的非接触式键盘输入监测系统。这些问题的研究与解决,对提升网络安全审计的准确性和隐私保护水平具有重要的现实意义。 信道状态信息(Channel State Information, CSI)是无线网络中不可或缺的一部分,它反映了无线信号在传播过程中的衰落特性。通过对CSI的深入分析,可以实现对无线信道状况的精确掌握,这对于无线通信的安全性至关重要。研究者利用这一特性,通过获取和分析无线信号的CSI信息,来检测和预防潜在的安全威胁。 深度学习模型训练在无线通信安全中起到了关键作用。基于深度学习的算法能够从海量的无线信号数据中学习并提取有用的特征,对于实现复杂的无线安全监测任务具有天然的优势。训练出的深度学习模型能够对无线环境中的各种异常行为进行有效识别,从而在源头上预防安全事件的发生。 击键行为识别与分类是本研究的另一个重点。通过分析无线信号与键盘输入活动之间的关系,研究者开发了基于WiFi信号的非接触式键盘输入监测系统。该系统能够通过分析无线信号的变化,识别出用户在键盘上的击键行为,并将其转换为可识别的文本信息。这不仅能够实现对键盘输入的实时监测,还能有效地防止键盘输入过程中的隐私泄露。 基于WiFi信号的非接触式键盘输入监测系统,为网络安全审计与隐私保护提供了新的途径。通过这一系统,安全审计人员可以对用户的键盘输入进行非侵入式的监测,从而对可能的安全威胁做出快速反应。同时,对于个人隐私保护而言,这一技术可以辅助用户及时发现并阻止未经授权的键盘监控行为,从而保障用户的隐私安全。 为了实现高精度的击键位识别,研究者开发了专门的击键特征提取算法。这些算法通过对WiFi信号变化的深入分析,能够有效地从信号中提取出与键盘击键活动相关的特征,进而实现对击键位置的高精度识别。这一成果不仅提高了无线监测系统的性能,也为相关的安全技术研究提供了新的思路。 本研究通过对无线通信安全问题的多角度探讨和技术创新,为网络安全审计与隐私保护提供了有力的工具和方法。其研究成果不仅能够提高无线网络安全的防护能力,还能够在保护个人隐私方面发挥重要作用,具有广阔的应用前景。
2025-10-11 11:54:30 7.59MB python
1
内容概要:本文介绍了基于MATLAB实现TCN-Transformer的时间序列预测项目。文章首先阐述了时间序列预测的重要性及其传统方法的局限性,随后详细描述了TCN和Transformer结合的优势,如提高预测精度、降低计算复杂度、增强泛化能力和解决数据稀缺问题。文中列举了项目面临的挑战,包括模型复杂性、计算资源消耗、模型优化难度、数据质量问题、长时序建模困难和解释性问题。此外,文章还强调了该项目的创新点,如创新性模型架构、多尺度时间序列特征提取、自注意力机制的引入、模型并行化训练、跨领域适用性和模型可扩展性。最后,文章展示了该模型在金融、气候预测、电力调度、医疗健康、交通运输、智能制造和营销需求预测等多个领域的应用前景,并提供了MATLAB中的模型架构及代码示例。; 适合人群:对时间序列预测有兴趣的研究人员、数据科学家以及具备一定编程基础并希望深入了解深度学习模型在时间序列预测中应用的从业者。; 使用场景及目标:①提高时间序列预测的准确性和泛化能力;②解决长序列数据处理中的计算瓶颈;③为金融、气候预测、电力调度、医疗健康等多个领域提供智能化决策支持;④通过MATLAB代码示例,帮助用户快速理解和实现TCN-Transformer模型。; 阅读建议:此资源详细介绍了TCN-Transformer模型在时间序列预测中的应用,不仅涵盖理论背景和创新点,还包括具体的模型架构和代码示例。建议读者在学习过程中结合理论与实践,逐步掌握模型的设计与实现,并尝试调整参数以优化预测效果。
1
内容概要:本文详细介绍了两种用于多特征用电负荷预测的深度学习组合模型——CNN-LSTM-Attention和CNN-GRU-Attention。通过对30分钟粒度的真实电力数据进行处理,包括数据预处理、滑动窗口生成、归一化等步骤,作者构建并优化了这两种模型。模型结构中,CNN用于提取局部特征,LSTM/GRU处理时序依赖,Attention机制赋予关键时间点更高的权重。实验结果显示,CNN-GRU-Attention模型在RMSE和MAPE指标上略优于CNN-LSTM-Attention,但在电价波动剧烈时段,LSTM版本更为稳定。此外,文中还讨论了模型部署时遇到的问题及其解决方案,如累积误差增长过快、显存占用高等。 适合人群:从事电力系统数据分析、机器学习建模的研究人员和技术人员,尤其是对深度学习应用于时序预测感兴趣的读者。 使用场景及目标:适用于需要精确预测电力负荷的场景,如电网调度、能源管理和智能电网建设。目标是提高预测精度,降低预测误差,从而优化电力资源配置。 其他说明:文中提供了详细的代码片段和模型架构图,帮助读者更好地理解和复现实验。同时,强调了数据预处理和特征选择的重要性,并分享了一些实用的经验技巧,如特征归一化、Attention层位置的选择等。
2025-05-29 18:16:10 675KB
1
SurfDock 来源于中国科学院上海药物所的郑明月为通讯作者的文章:《SurfDock is a Surface-Informed Diffusion Generative Model for Reliable and Accurate Protein-ligand Complex Prediction》于2024 年 11 月 27 日正式发表在 《Nature Methods》上。在文章中,SurfDock 在多个基准测试中展现了卓越的表现,包括 PDBbind 2020 时间分割集、Astex Diverse 集和 PoseBusters 基准集。在模型中,SurfDock 将多模态蛋白质信息(包括表面特征、残基结构和预训练的序列级特征)整合成一个一致的表面节点级表示,这一能力对实现高对接成功率和改善构象合理性起到了重要作用。SurfDock 的另一个特点是其可选的弛豫(构象优化),旨在进行蛋白质固定配体优化,从而显著提高其准确性。 我们的测评结果显示,生成的小分子构象还是比较合理的,同时生成的结合模式与晶体非常接近。
2025-05-21 16:03:15 24.79MB 分子对接 深度学习 扩散模型 药物设计
1
基于CNN-RNN的高光谱图像分类项目报告:全套代码、数据集及准确率记录管理,高光谱图像分类:CNN-RNN深度学习模型的全套解决方案,高光谱图像分类CNN-RNN结合 pytorch编写 该项目报告网络模型,2个开源数据集,训练代码,预测代码,一些函数的 拿到即可进行运行,全套。 代码中加入了每一步的预测准确率的输出,和所有迭代次数中,预测精度最好的模型输出。 所有预测结果最后以txt文本格式输出保存,多次运行不会覆盖。 设置随机种子等等。 该项目在两个数据集上精度均可达96以上(20%的训练数据)。 ,高光谱图像分类; CNN-RNN结合; PyTorch编写; 网络模型; 开源数据集; 训练代码; 预测代码; 函数; 预测准确率输出; 最佳模型输出; txt文本格式保存; 随机种子设置; 精度达96以上,高光谱图像分类:CNN-RNN模型全解析报告
2025-05-11 05:05:46 4.75MB
1
"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可视化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经网络-空间注意力机制CNN-BILSTM-SAM-Attention多特征分类预测。 多特征输入单输出的二分类及多分类模型。 程序内注释详细替数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。 多边形面积PAM,分类准确率,灵敏度,特异性,曲线下面积AUC,Kappa系数,F_measure。 ,核心关键词: CNN-BILSTM-Attention; 空间注意力机制; 多特征分类预测; MATLAB程序; 分类效果图; 迭代优化图; 混淆矩阵图; 多边形面积; 分类准确率; 灵敏度; 特异性; AUC; Kappa系数; F_measure。,基于多特征输入的CNN-BILSTM-Attention模型及其分类预测效果图优化分析
2025-03-15 17:48:02 327KB gulp
1