针对Tiny YOLOv3算法在扶梯异常行为检测时存在高漏检率和低准确率的问题,提出一种改进的Tiny YOLOv3网络结构用于扶梯异常行为检测。利用K-means++算法对数据集中的目标边框进行聚类,根据聚类结果优化网络的先验框参数,使训练网络在异常行为检测方面具有一定的针对性。利用多层深度可分离卷积提取深层次的语义信息,加深特征提取的网络结构;增加一个尺度用于低层语义信息的融合,改进原有算法预测层的结构;使用GPU进行多尺度训练,得到最优的权重模型,对扶梯异常行为进行检测。实验结果表明,优化后的模型与Tiny YOLOv3相比,平均漏检率减小了22.8%,检测精度提高了3.4%,检测速度是YOLOv3的1.7倍,更好地兼顾了检测的精度和实时性。
2023-03-28 20:50:17 19.76MB 图像处理 异常行为 自动扶梯 深度可分
1
基于深度学习分位数回归模型的风电功率概率密度预测.pdf
针对YOLO系列的目标检测方法参数多、计算量大、生成检测模型规模大等导致对运行硬件平台计算资源要求高的问题,提出一种基于反残差结构的轻量级多目标检测网络(IR-YOLO)。首先,利用深度可分离卷积减少模型参数和计算量;其次,基于深度可分离卷积构造反残差模块,提取高维特征;最后,根据反残差结构特点,利用线性激活函数减少通道组合过程激活函数的信息损失。IR-YOLO算法较YOLOv3-Tiny算法模型尺寸减少47.7%。实验结果表明IR-YOLO算法在不影响检测精度的前提下,可有效减少网络计算量和存储量。
2022-03-23 17:25:58 7.33MB 图像处理 目标检测 反残差结 深度可分
1
针对风电功率预测问题,在现有预测方法和概率性区间预测的基础上,提出基于深度学习分位数回归的风电功率概率预测方法。该方法采用Adam随机梯度下降法在不同分位数条件下对长短期记忆神经网络(LSTM)的输入、遗忘、记忆、输出参数进行估计,得出未来200 h内各个时刻风电功率的概率密度函数。根据美国PJM网上的风电功率实际数据的仿真结果表明,所提方法不仅能得出较为精确的点预测结果,而且能够获得风电功率完整的概率密度函数预测结果。与神经网络分位数回归相比,其精度更高,且在同等置信度下的预测区间范围更小。
1
针对水下三维传感器网络定位困难、传输损耗大等特性,提出了基于深度和能量的水下三维传感器网络分簇路由协议。在分簇过程中,根据水下节点到水面的深度、节点的剩余能量来选举簇头,普通节点根据与簇头的深度差选择它们自己的簇头,形成适合水下数据传输的锥形簇结构。簇间数据传输考虑了水下节点数据传输向上(水面方向)和向内(以Sink节点垂线为柱心的方向)的传输原则,采用多跳传输,保证数据一定是由深水层向浅水层传递。仿真结果表明,该算法能有效均衡网络能耗,延长网络的生存周期,增加网络数据传输效率。
1
提出了一种基于深度学习的车位智能检测方法。利用TensorFlow深度学习平台对车辆目标识别模型进行了训练, 提取了有效车辆图像的优化间隔, 给出了车辆分布的精准识别结果, 实现了对车辆分布识别结果的有序编号和车位空缺状况的准确判断。利用模拟数据和实际采集数据, 分别验证了车位分布的智能识别、车位智能编号和空车位判断的可靠性。
2021-02-25 20:39:23 18.89MB 成像系统 目标识别 车位检测 深度可分
1