基于反残差结构的轻量级多目标检测网络

上传者: 38655309 | 上传时间: 2022-03-23 17:25:58 | 文件大小: 7.33MB | 文件类型: -
针对YOLO系列的目标检测方法参数多、计算量大、生成检测模型规模大等导致对运行硬件平台计算资源要求高的问题,提出一种基于反残差结构的轻量级多目标检测网络(IR-YOLO)。首先,利用深度可分离卷积减少模型参数和计算量;其次,基于深度可分离卷积构造反残差模块,提取高维特征;最后,根据反残差结构特点,利用线性激活函数减少通道组合过程激活函数的信息损失。IR-YOLO算法较YOLOv3-Tiny算法模型尺寸减少47.7%。实验结果表明IR-YOLO算法在不影响检测精度的前提下,可有效减少网络计算量和存储量。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明