为了提高利用深度神经网络预测单图像深度信息的精确度,提出了一种采用自监督卷积神经网络进行单图像深度估计的方法。首先,该方法通过在编解码结构中引入残差结构、密集连接结构和跳跃连接等方式改进了单图像深度估计卷积神经网络,改善了网络的学习效率和性能,加快了网络的收敛速度;其次,通过结合灰度相似性、视差平滑和左右视差匹配等损失度量设计了一种更有效的损失函数,有效地降低了图像光照因素影响,遏制了图像深度的不连续性,并能保证左右视差的一致性,从而提高深度估计的鲁棒性;最后,采用立体图像作为训练数据,无需标深度监督信息,实现了端到端的单幅图像深度估计。在 Tensorflow框架下,用KIT和 Cityscapes数据集进行实验结果表明,与目前的主流方法相比,该方法在预测深度的精确度方面有较大提升,拥有更好的深度预测性能。
2024-05-28 17:31:59 724KB
1
中值过滤代码matlab 光场深度估计 该工具包含一些光场深度估计方法。 如何使用 运行main.m (此软件已在带有Windows 10 64位环境的Matlab 2016a上进行了测试) 参数data_type选择数据集。 data_type = 1新的基准数据集 Honauer, Katrin, Ole Johannsen, Daniel Kondermann and Bastian Goldluecke. A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields[C]// Asian Conference on Computer Vision. Springer, Cham, 2016: 19-34. data_type = 2旧基准数据集 Wanner, Sven, Stephan Meister and Bastian Goldluecke. Datasets and Benchmarks for Dens-ely Sampled 4D Light Fields [C] // P
2023-03-22 15:03:17 1.79MB 系统开源
1
基于深度学习的深度估计或vo中性能评估指标,rel、rmse、log10等
2023-03-06 22:12:53 525KB deeple depthm
1
用于深度估计和语义分割的城市景观处理数据集,该数据集包含128 x 256大小的图像,它们的19类语义分割标签和反向深度标签。该数据集是城市景观数据集的预处理数据集,用于两个任务深度估计和语义分割。每类数据有3000多个 用于深度估计和语义分割的城市景观处理数据集,该数据集包含128 x 256大小的图像,它们的19类语义分割标签和反向深度标签。该数据集是城市景观数据集的预处理数据集,用于两个任务深度估计和语义分割。每类数据有3000多个
2022-12-23 15:28:08 641.88MB 语义分割 城市景观 数据集 深度学习
data_generator.py文件:数据生成器。 DispNet.py文件:网络结构。 第1步:运行annotation.py文件,在model_data文件夹下生成.txt。 第2步:运行DispNet_Trainer.py文件。 第3步:运行DispNet_Tester.py文件。
1
SGM算法在KITTI2015数据集上测评结果 开发环境:python=3.6、numpy=1.19.5、opencv-python=4.5.5.64 操作系统:Ubuntu20.04LTS 处理器:Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz 实验记录: 1、WTA、SSD策略,disparity=190,radius=3,视差<=3精度:0.5611,运行时间:7.4344s 2、WTA、SSD策略,disparity=64,radius=3,视差<=3精度:0.5611,运行时间:2.7495s 3、SGM、SSD策略,disparity=64,radius=3,视差<=3精度:0.8161,运行时间:22.7137s 4、SGM、NCC策略,disparity=64,radius=3,视差<=3精度:0.8119,运行时间:28.0640s 5、SGM、SAD策略,disparity=64,radius=3,视差<=3精度:0.6681,运行时间:22.3349
2022-10-10 21:05:45 8.81MB 1、双目立体匹配 2、深度估计 3、SGM
1
针对单目深度估计网络庞大的参数量和计算量,提出一种轻量金字塔解码结构的单目深度估计网络,可以在保证估计精度的情况下降低网络模型的复杂度、减少运算时间。该网络基于编解码结构,以端到端的方式估计单目图像的深度图。编码端使用ResNet50网络结构;在解码端提出了一种轻量金字塔解码模块,采用深度空洞可分离卷积和分组卷积以提升感受野范围,同时减少了参数量,并且采用金字塔结构融合不同感受野下的特征图以提升解码模块的性能;此外,在解码模块之间增加跳跃连接实现知识共享,以提升网络的估计精度。在NYUD v2数据集上的实验结果表明,与结构注意力引导网络相比,轻量金字塔解码结构的单目深度估计网络在误差RMS的指标上降低约11.0%,计算效率提升约84.6%。
1
深度估计网络FSRE-Depth预训练模型,github上放在了google
2022-07-05 21:05:48 137.42MB 深度估计
1
深度估计网络DNet预训练模型
2022-07-04 19:10:03 98.87MB 深度估计
1
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals---->基于拉普拉斯金字塔深度残差的单目深度估计 是一篇优秀的CVPR文档 word全文翻译
2022-05-31 09:04:17 5.39MB 深度估计
1