采用针对静态背景下的基于Surendra背景更新算法的背景减除法对运动人体进行检测.为视频场景建立自适应的背景模型,通过原始图像和背景模型差分获得前景图像,再对检测出来的图像进行了二值化、数学形态学分析、连通分析、尺度归一等一系列图像预处理工作,为跟踪与识别奠定了基础.重点讨论了二值化自适应阈值选择的多种方法,总结出Kapur熵阈值选取法的优越性. ### 用于步态识别的行人轮廓提取 #### 摘要与引言 本文提出了一种基于Surendra背景更新算法的背景减除法来检测静态背景下的运动人体。为了实现这一目标,首先为视频场景建立了一个自适应背景模型。然后,通过原始图像与背景模型之间的差异提取前景图像。接下来,对提取出的图像进行一系列预处理操作,包括二值化、数学形态学分析、连通分析以及尺度归一化等,这些操作为后续的跟踪与识别提供了基础。特别地,本文重点讨论了二值化过程中自适应阈值选择的多种方法,并总结出了Kapur熵阈值选取法的优势。 #### 运动人体检测 在步态识别领域,准确地检测和提取行人的轮廓是非常关键的一步。目前,常见的运动人体检测方法主要有三种:背景减除法、帧间差分法和光流法。本研究中采用的是背景减除法。 ##### 背景减除法 背景减除法是一种常用的方法,它通过对比当前帧与背景模型之间的差异来提取前景物体。背景模型可以通过多种方式建立,其中一种方法是利用Surendra提出的背景更新算法。这种方法可以动态调整背景模型以适应环境的变化,从而提高检测的准确性。 #### 图像预处理 在获取到前景图像之后,需要对其进行一系列预处理操作以去除噪声并提取有用信息。这些预处理步骤包括: 1. **二值化**:将图像转换为只有黑白两种颜色的二值图像。选择合适的阈值是关键,因为不同的阈值会影响到前景的提取效果。本文讨论了多种自适应阈值选择方法,并强调了Kapur熵阈值选取法的优点。该方法通过最大化图像的信息熵来确定最佳阈值,从而在保持图像细节的同时减少噪声的影响。 2. **数学形态学分析**:通过对图像进行膨胀和腐蚀等操作来去除小的噪声点或填充物体内部的小孔洞,进而优化图像的质量。 3. **连通分析**:识别和分离图像中的连通区域,这对于区分不同的人体轮廓至关重要。 4. **尺度归一化**:由于不同人或者不同拍摄角度可能会导致图像尺寸的变化,因此需要对图像进行尺度归一化,以确保所有图像具有相同大小,方便后续处理。 #### 二值化阈值选择 在二值化过程中,阈值的选择对于提取高质量的行人轮廓至关重要。本文探讨了多种阈值选择方法,并指出Kapur熵阈值选取法的优势。这种方法的基本思想是通过最大化图像的信息熵来确定最佳阈值。信息熵表示图像中灰度级分布的不确定性。当图像被分割成前景和背景两部分时,每一部分的信息熵应该尽可能大,这意味着分割后的两部分应该具有最大的区别性。Kapur熵阈值选取法通过计算每个可能的阈值对应的总熵,并选择使总熵最大的阈值作为最佳阈值。这种方法能够自动适应图像的亮度变化,从而提高轮廓提取的准确性。 #### 结论 本文介绍了一种用于步态识别的行人轮廓提取方法,该方法通过背景减除法检测运动人体,并对提取的图像进行了一系列预处理操作,包括二值化、数学形态学分析、连通分析以及尺度归一化等。特别是,在二值化过程中,采用了Kapur熵阈值选取法来自动确定最佳阈值,这种方法能够有效提高轮廓提取的准确性。通过这些技术和方法的应用,可以为步态识别提供更加可靠的基础数据。
2025-04-11 11:10:07 629KB 工程技术 论文
1
资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、说明、论文、数据集一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 4、如有侵权请私信博主,感谢支持
2025-04-05 20:51:04 120.72MB 深度学习 人工智能
1
行业分类-设备装置-一种视觉触觉融合的步态识别系统及识别方法
2024-04-15 15:33:37 577KB
1
【MATLAB教程案例54】Alexnet网络的MATLAB编程学习和实现,以步态识别为例进行仿真分析。matlab入门100例中用到的步态数据库。
2023-03-31 21:14:42 1.42MB Alexnet
1
毕业设计深度学习基于步态识别检测的多目标跨镜头跟踪算法研究项目源码.zip毕业设计基于步态识别的多目标跨镜头跟踪算法研究 主算法:基于yoloV5-deepsort框架进行目标检测和跟踪+GaitSet算法 毕业设计深度学习基于步态识别检测的多目标跨镜头跟踪算法研究项目源码.zip毕业设计基于步态识别的多目标跨镜头跟踪算法研究 主算法:基于yoloV5-deepsort框架进行目标检测和跟踪+GaitSet算法毕业设计深度学习基于步态识别检测的多目标跨镜头跟踪算法研究项目源码.zip毕业设计基于步态识别的多目标跨镜头跟踪算法研究 主算法:基于yoloV5-deepsort框架进行目标检测和跟踪+GaitSet算法毕业设计深度学习基于步态识别检测的多目标跨镜头跟踪算法研究项目源码.zip毕业设计基于步态识别的多目标跨镜头跟踪算法研究 主算法:基于yoloV5-deepsort框架进行目标检测和跟踪+GaitSet算法毕业设计深度学习基于步态识别检测的多目标跨镜头跟踪算法研究项目源码.zip毕业设计基于步态识别的多目标跨镜头跟踪算法研究 主算法:基于yoloV5-deepsort框架进行
【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述 【干货】【内部机密资料】步态识别综述
2022-07-10 16:07:38 109KB 步态识别
毕业设计基于步态识别的多目标跨镜头跟踪算法研究 主算法:基于yoloV5-deepsort框架进行目标检测和跟踪+GaitSet算法 Introduction This repository contains a highly configurable two-stage-tracker that adjusts to different deployment scenarios. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algorithm which tracks the objects. It can track any object that your Yolov5 model was trained to detect.
基于yolov5的步态识别多目标跨镜头跟踪检测算法系统源码。 毕业设计题目:基于步态识别的多目标跨镜头跟踪算法研究 主算法:基于yoloV5-deepsort框架进行目标检测和跟踪+GaitSet算法 Introduction This repository contains a highly configurable two-stage-tracker that adjusts to different deployment scenarios. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algorithm which tracks the objects. It can track any object that your Yolov5 model was trained to detect.
数据融合matlab代码基于CNN的多模式步态识别 弗朗西斯科·卡斯特罗(Francisco M. Castro)和曼努埃尔·J·马林·吉梅内斯(Manuel J.Marin-Jimenez) 此代码在TUM-GAID和CASIA-B的正常情况下运行测试。 对于其他情况,您只需下载数据集并构建相应的imdb。 该代码随附的模型为: 基于3D卷积的CNN,使用光流作为TUM-GAID的输入 基于3D卷积的CNN,可对TUM-GAID进行光流,灰度和深度模态的融合。 基于CNN的ResNet,使用灰色作为CASIA-B的输入。 基于3D卷积的CNN,可对CASIA-B进行光流和灰度的融合。 先决条件 MatConvNet库: MexConv3D(用于3D转换): 将测试数据和模型下载到各自的文件夹中。 链接位于每个文件夹中的README文件中 该代码已经在Ubuntu 18.04和Matlab 2017b上进行了测试。 快速开始 假设您已将cnngaitmm库放置在文件夹 。 启动Matlab并键入以下命令: cd startup_cnngait demo_T
2022-05-26 17:05:15 21KB 系统开源
1
步态识别系统[神经网络] V3.4:基于步态生物特征识别的神经网络的简单有效的源代码
2022-05-10 18:52:48 15.2MB 开源软件
1