用于步态识别的行人轮廓提取 (2012年)

上传者: 38720009 | 上传时间: 2025-04-11 11:10:07 | 文件大小: 629KB | 文件类型: PDF
采用针对静态背景下的基于Surendra背景更新算法的背景减除法对运动人体进行检测.为视频场景建立自适应的背景模型,通过原始图像和背景模型差分获得前景图像,再对检测出来的图像进行了二值化、数学形态学分析、连通分析、尺度归一等一系列图像预处理工作,为跟踪与识别奠定了基础.重点讨论了二值化自适应阈值选择的多种方法,总结出Kapur熵阈值选取法的优越性. ### 用于步态识别的行人轮廓提取 #### 摘要与引言 本文提出了一种基于Surendra背景更新算法的背景减除法来检测静态背景下的运动人体。为了实现这一目标,首先为视频场景建立了一个自适应背景模型。然后,通过原始图像与背景模型之间的差异提取前景图像。接下来,对提取出的图像进行一系列预处理操作,包括二值化、数学形态学分析、连通分析以及尺度归一化等,这些操作为后续的跟踪与识别提供了基础。特别地,本文重点讨论了二值化过程中自适应阈值选择的多种方法,并总结出了Kapur熵阈值选取法的优势。 #### 运动人体检测 在步态识别领域,准确地检测和提取行人的轮廓是非常关键的一步。目前,常见的运动人体检测方法主要有三种:背景减除法、帧间差分法和光流法。本研究中采用的是背景减除法。 ##### 背景减除法 背景减除法是一种常用的方法,它通过对比当前帧与背景模型之间的差异来提取前景物体。背景模型可以通过多种方式建立,其中一种方法是利用Surendra提出的背景更新算法。这种方法可以动态调整背景模型以适应环境的变化,从而提高检测的准确性。 #### 图像预处理 在获取到前景图像之后,需要对其进行一系列预处理操作以去除噪声并提取有用信息。这些预处理步骤包括: 1. **二值化**:将图像转换为只有黑白两种颜色的二值图像。选择合适的阈值是关键,因为不同的阈值会影响到前景的提取效果。本文讨论了多种自适应阈值选择方法,并强调了Kapur熵阈值选取法的优点。该方法通过最大化图像的信息熵来确定最佳阈值,从而在保持图像细节的同时减少噪声的影响。 2. **数学形态学分析**:通过对图像进行膨胀和腐蚀等操作来去除小的噪声点或填充物体内部的小孔洞,进而优化图像的质量。 3. **连通分析**:识别和分离图像中的连通区域,这对于区分不同的人体轮廓至关重要。 4. **尺度归一化**:由于不同人或者不同拍摄角度可能会导致图像尺寸的变化,因此需要对图像进行尺度归一化,以确保所有图像具有相同大小,方便后续处理。 #### 二值化阈值选择 在二值化过程中,阈值的选择对于提取高质量的行人轮廓至关重要。本文探讨了多种阈值选择方法,并指出Kapur熵阈值选取法的优势。这种方法的基本思想是通过最大化图像的信息熵来确定最佳阈值。信息熵表示图像中灰度级分布的不确定性。当图像被分割成前景和背景两部分时,每一部分的信息熵应该尽可能大,这意味着分割后的两部分应该具有最大的区别性。Kapur熵阈值选取法通过计算每个可能的阈值对应的总熵,并选择使总熵最大的阈值作为最佳阈值。这种方法能够自动适应图像的亮度变化,从而提高轮廓提取的准确性。 #### 结论 本文介绍了一种用于步态识别的行人轮廓提取方法,该方法通过背景减除法检测运动人体,并对提取的图像进行了一系列预处理操作,包括二值化、数学形态学分析、连通分析以及尺度归一化等。特别是,在二值化过程中,采用了Kapur熵阈值选取法来自动确定最佳阈值,这种方法能够有效提高轮廓提取的准确性。通过这些技术和方法的应用,可以为步态识别提供更加可靠的基础数据。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明