林轩田和吴恩达的《机器学习基石》课程笔记详细地涵盖了机器学习领域的基础理论和核心概念。林轩田在课程中细致地讲解了机器学习中的关键问题,包括学习问题的本质、如何对Yes-No问题进行学习、不同类型的学习方法、学习的可行性、训练与测试的区别、泛化理论、VC维、噪声和误差、线性回归、逻辑回归、线性分类模型、非线性变换、过拟合的危害、正则化、验证方法以及三个学习原则。 在《机器学习技法》部分,课程笔记深入讲解了支持向量机(SVM)算法的各种变体,包括线性SVM、对偶SVM、核SVM以及软间隔SVM。这些技术都是机器学习中实现有效分类的重要工具,对于AI算法工程师来说,理解和掌握这些技法对于实际应用至关重要。 林轩田在课程中不仅解释了算法的数学原理,还通过实例演示了如何在实际问题中应用这些机器学习技术。笔记内容的全面性,从基础理论到高级技法,为学习者构建了一个系统的机器学习知识体系。该课程笔记对于那些希望深入了解和支持向量机等机器学习算法的读者来说,是非常有价值的资料。 AI算法工程师在学习这些笔记时能够了解到机器学习的多维度内容,不仅包括基础的理论框架,还有针对实际问题的具体解决方法。AI有道这个专注于人工智能技术分享的平台提供了林轩田和吴恩达两位专家的权威讲解,通过这样的学习资源,学习者可以更快地掌握机器学习的核心知识,进而在人工智能领域更深入地发展自己的专业技能。 另外,这些笔记还适合对人工智能领域有兴趣的读者作为参考材料,有助于加深对AI算法原理和实现细节的认识。可以说,林轩田和吴恩达的这些课程笔记是机器学习领域学习者不可多得的宝贵资料,对于初学者和专业人士都有着重要的参考价值。
2025-07-23 12:08:38 311.93MB 机器学习笔记 吴恩达
1
机器学习是人工智能领域中最重要的分支之一,它使得计算机能够通过数据学习,并在没有明确编程的情况下做出决策或预测。吴恩达作为该领域的著名专家,他的课程和笔记常被用来作为学习机器学习的参考资料。在2025年发布的吴恩达机器学习笔记中,我们可以看到关于机器学习基础、监督学习和非监督学习、线性回归、逻辑回归、过拟合、高级学习算法等核心概念的深入讲解。 监督学习是机器学习的一种方式,其中包括回归算法和分类算法。回归算法通过历史数据找到变量之间的关系,并据此预测未知数值;分类算法则是将数据划分到某个类别中,例如判断邮件是垃圾邮件还是非垃圾邮件。非监督学习中,聚类算法和异常检测等方法不需要预定义的标签,而是直接对未标记的数据进行分析。 线性回归是回归算法中的一种基础形式,通过确定一条直线来最小化误差,预测连续的值。其训练集是用于模型训练的数据集,特征代表数据集中的每一个维度,而代价函数则是评价模型预测值与真实值之间差距的函数。梯度下降是常用的最优化算法,用于最小化代价函数,找到模型的参数。特征工程是在学习过程中不断发现新的特征变量,以改进模型的预测能力。 逻辑回归作为分类问题的解决方案,不适用于线性回归,因此引入了sigmoid函数,将线性方程转化为概率,适用于分类问题。决策边界是指定如何根据预测概率将数据分为不同类别。逻辑回归的损失函数需要重新定义,交叉熵损失函数是其中常用的一种。正则化是解决过拟合问题的技术,它通过引入惩罚项减少模型的复杂度,即减少特征量,缩小参数权重。 在高级学习算法部分,机器学习可以用于需求预测等复杂问题。神经网络的各个层可以捕捉输入数据的不同特征,通过全连接层的组合,使网络具有强大的学习和预测能力。多元线性回归和多项式回归使得模型能够处理更多维度的数据和非线性关系。 为了准确预测,机器学习模型需要适当的特征选择,特征缩放是必要的步骤,使得所有特征在同一尺度上,便于模型学习。特征选择和正则化有助于解决过拟合问题,保证模型的泛化能力。学习率选择对于梯度下降算法至关重要,决定了算法收敛的速度和质量。梯度下降过程中,需要对模型参数同时更新,而非逐个更新。 2025最新吴恩达机器学习笔记涵盖了机器学习的理论基础与应用实践,为学习者提供了深入理解机器学习算法、模型构建和优化的宝贵资源。
2025-07-23 12:05:54 125.28MB 机器学习
1
Matlab 机器学习笔记 Matlab 是一个功能强大且广泛应用于机器学习和数据分析的工具。本笔记总结了 Matlab 中的机器学习技巧和 GUI 使用方法。 机器学习基础 机器学习是指在计算机科学中,使用算法和统计模型来实现自动化的数据分析和预测的技术。机器学习可以分为有导师学习、无导师学习和半监督学习三种。有导师学习是指在数据集中的每个样本都有标签,而无导师学习是指数据集中的样本没有标签。半监督学习是指数据集中的样本既有标签也有没有标签的样本。 神经网络 神经网络是机器学习中的一种常用模型,用于模拟人脑的神经网络。神经网络可以分为前向神经网络、反馈神经网络和自动编码器等。前向神经网络是指神经网络中的信息流程是单向的,从输入层到输出层。反馈神经网络是指神经网络中的信息流程可以从输出层反馈到输入层。 神经网络的学习方式 神经网络的学习方式可以分为有导师学习和无导师学习。有导师学习是指神经网络在学习过程中,使用已经标注的数据集来调整神经网络的参数。无导师学习是指神经网络在学习过程中,不使用已经标注的数据集,而是使用未标注的数据集来学习。 神经网络的功能分类 神经网络的功能可以分为拟合(回归)、分类和概率神经网络等。拟合神经网络是指神经网络用于预测连续值的输出。分类神经网络是指神经网络用于预测离散值的输出。概率神经网络是指神经网络用于预测概率分布的输出。 Matlab 中的神经网络工具 Matlab 提供了一个强大的神经网络工具箱,名为 Neural Network Toolbox。该工具箱提供了多种类型的神经网络模型,可以用于解决不同的机器学习问题。 其他机器学习算法 除了神经网络外,Matlab 还提供了其他机器学习算法,如决策树、随机森林、遗传算法、粒子群算法等。 Matlab 中的机器学习 GUI Matlab 提供了一个强大的机器学习 GUI,名为 nntool。该 GUI 可以帮助用户快速创建和训练神经网络模型,同时也可以用于其他机器学习算法。 Matlab 中的机器学习应用 Matlab 的机器学习工具箱和 GUI 可以应用于多种领域,如图像识别、自然语言处理、数据挖掘等。 结论 Matlab 是一个功能强大且广泛应用于机器学习和数据分析的工具。通过 Matlab,可以快速创建和训练机器学习模型,并应用于多种领域。本笔记总结了 Matlab 中的机器学习技巧和 GUI 使用方法,为用户提供了一个快速入门的指南。
2024-08-10 20:44:54 4.48MB 机器学习 gui
1
机器学习笔记(5):神经网络,学习资源为:机器学习-周志华 + MOOC 中国地质大学机器学习课程
2024-08-10 19:41:28 13KB 机器学习笔记
1
对于在学机器学习的学生党很有用处。斯坦福机器学习讲义理解笔记,以及原件。还包括李飞飞CVppt课件。
2023-07-09 20:57:23 89.43MB 机器学习 笔记理解
1
主要参考资料是周志华教授的《机器学习》,此外还参考了NTU 2018 Machine Learning、Stanford CS229、李航教授《统计学习方法》以及《Pattern Recognition and Machine Learning》。
2023-06-03 12:58:41 1.67MB 机器学习
1
该笔记是我在学习吴恩达机器学习时整理的,希望能够帮助到大家,如有错误还请大家指正。如果你想进入尖端人工智能领域,该笔记将帮助你做到这一点,掌握深度学习将为您提供许多新的职业机会。深度学习也是一种新的“超级大国”,它可以让你构建几年前还不可能实现的人工智能系统。使用流行的机器学习库NumPy和scikit-learn在Python中构建机器学习模型。学习建立和训练有监督的机器学习模型,用于预测和二元分类任务,包括线性回归和逻辑回归。 学习使用TensorFlow构建和训练一个神经网络来执行多类分类。应用机器学习开发的最佳实践,使您的模型泛化。学习将使用无监督学习技术进行无监督学习:包括聚类和异常检测。使用协同过滤方法和基于内容的深度推荐系统。 希望这个笔记能够帮助到你。
2023-04-12 12:09:31 21.16MB 机器学习笔记
1
这是笔记配套的代码,详细说明看本人博文,上面有详细介绍
2023-03-17 18:00:15 50KB CRF 机器学习笔记
1
1.1 欢迎 1 1.2 机器学习是什么 1.3 监督学习 6 1.4 无监督学习 10 2.1 模型表示 15 2.2 代价函数 17 2.3 代价函数的直观
2022-11-30 21:43:36 20.25MB
1
机器学习part1.md
2022-10-22 12:05:56 5KB 机器学习笔记
1