[{"title":"( 55 个子文件 89.43MB ) 斯坦福机器学习讲义理解笔记以及李飞飞CVppt课件zip","children":[{"title":"上传","children":[{"title":"李飞飞斯坦福课程ppt","children":[{"title":"cs231n_2017_lecture15.pdf <span style='color:#111;'> 8.00MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture2.pdf <span style='color:#111;'> 5.30MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture9.pdf <span style='color:#111;'> 2.34MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture3.pdf <span style='color:#111;'> 4.63MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture8.pdf <span style='color:#111;'> 4.51MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture13.pdf <span style='color:#111;'> 4.29MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture7.pdf <span style='color:#111;'> 2.73MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture10.pdf <span style='color:#111;'> 5.62MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture4.pdf <span style='color:#111;'> 2.62MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture6.pdf <span style='color:#111;'> 3.04MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture5.pdf <span style='color:#111;'> 10.38MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture11.pdf <span style='color:#111;'> 7.18MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture16.pdf <span style='color:#111;'> 4.75MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture14.pdf <span style='color:#111;'> 1.64MB </span>","children":null,"spread":false},{"title":"cs231n_2017_lecture12.pdf <span style='color:#111;'> 15.79MB </span>","children":null,"spread":false}],"spread":false},{"title":"Stanford Universtiy Machine Learning(含学习笔记和原始讲义)","children":[{"title":"斯坦福大学机器学习个人学习笔记(上)","children":[{"title":"(5)规则化和模型选择.pdf <span style='color:#111;'> 895.02KB </span>","children":null,"spread":false},{"title":"(1)线性回归、logistic回归和一般回归.pdf <span style='color:#111;'> 842.55KB </span>","children":null,"spread":false},{"title":"(6)K-means聚类算法.pdf <span style='color:#111;'> 532.76KB </span>","children":null,"spread":false},{"title":"(4)支持向量机SVM(下).pdf <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"(7)混合高斯模型和EM算法.pdf <span style='color:#111;'> 436.95KB </span>","children":null,"spread":false},{"title":"(8)EM算法.pdf <span style='color:#111;'> 757.24KB </span>","children":null,"spread":false},{"title":"(3)支持向量机SVM(上).pdf <span style='color:#111;'> 877.86KB </span>","children":null,"spread":false},{"title":"请先查看该说明.txt <span style='color:#111;'> 910B </span>","children":null,"spread":false},{"title":"(2)判别模型、生成模型与朴素贝叶斯方法.pdf <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false}],"spread":true},{"title":"斯坦福大学机器学习个人学习笔记(下)","children":[{"title":"(14)增强学习.pdf <span style='color:#111;'> 899.98KB </span>","children":null,"spread":false},{"title":"(9)在线学习.pdf <span style='color:#111;'> 530.77KB </span>","children":null,"spread":false},{"title":"(16)偏最小二乘法回归.pdf <span style='color:#111;'> 279.08KB </span>","children":null,"spread":false},{"title":"(15)典型关联分析.pdf <span style='color:#111;'> 961.54KB </span>","children":null,"spread":false},{"title":"(13)因子分析.pdf <span style='color:#111;'> 952.74KB </span>","children":null,"spread":false},{"title":"(12)线性判别分析.pdf <span style='color:#111;'> 918.07KB </span>","children":null,"spread":false},{"title":"(10)主成分分析.pdf <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false},{"title":"(11)独立成分分析.pdf <span style='color:#111;'> 905.68KB </span>","children":null,"spread":false},{"title":"请先查看该说明.txt <span style='color:#111;'> 910B </span>","children":null,"spread":false}],"spread":true},{"title":"斯坦福大学机器学习课程原始讲义","children":[{"title":"cs229-cvxopt2.pdf <span style='color:#111;'> 196.80KB </span>","children":null,"spread":false},{"title":"cs229-notes8.pdf <span style='color:#111;'> 81.18KB </span>","children":null,"spread":false},{"title":"cs229-notes6.pdf <span style='color:#111;'> 50.85KB </span>","children":null,"spread":false},{"title":"cs229-notes3.pdf <span style='color:#111;'> 175.57KB </span>","children":null,"spread":false},{"title":"cs229-notes1.pdf <span style='color:#111;'> 229.65KB </span>","children":null,"spread":false},{"title":"cs229-notes5.pdf <span style='color:#111;'> 86.63KB </span>","children":null,"spread":false},{"title":"cs229-notes10.pdf <span style='color:#111;'> 75.40KB </span>","children":null,"spread":false},{"title":"cs229-notes12.pdf <span style='color:#111;'> 73.96KB </span>","children":null,"spread":false},{"title":"cs229-notes9.pdf <span style='color:#111;'> 81.16KB </span>","children":null,"spread":false},{"title":"cs229-notes7a.pdf <span style='color:#111;'> 264.67KB </span>","children":null,"spread":false},{"title":"cs229-notes7b.pdf <span style='color:#111;'> 53.89KB </span>","children":null,"spread":false},{"title":"cs229-notes4.pdf <span style='color:#111;'> 108.74KB </span>","children":null,"spread":false},{"title":"cs229-cvxopt.pdf <span style='color:#111;'> 148.86KB </span>","children":null,"spread":false},{"title":"cs229-prob.pdf <span style='color:#111;'> 147.50KB </span>","children":null,"spread":false},{"title":"cs229-hmm.pdf <span style='color:#111;'> 197.80KB </span>","children":null,"spread":false},{"title":"cs229-notes11.pdf <span style='color:#111;'> 74.18KB </span>","children":null,"spread":false},{"title":"cs229-gp.pdf <span style='color:#111;'> 150.96KB </span>","children":null,"spread":false},{"title":"cs229-linalg.pdf <span style='color:#111;'> 164.59KB </span>","children":null,"spread":false},{"title":"cs229-notes2.pdf <span style='color:#111;'> 858.17KB </span>","children":null,"spread":false},{"title":"ML-advice.pdf <span style='color:#111;'> 313.47KB </span>","children":null,"spread":false}],"spread":false},{"title":".DS_Store <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]