VisionPro算法优化下的涂胶检测系统:自动轨迹获取与智能断胶控制,"VisionPro算法驱动的涂胶检测系统:模板轨迹的自动获取与精准定位实现",visionpro算法做的涂胶检测(已经在项目中实际应用) 定义起点 ,自动获取涂胶轨迹 ,实现方式ToolBlock,脚本语言 C#高级脚本 1、需要先根据OK的胶路做一个模板轨迹,后面会根据做的模板轨迹去寻找 2、可以自己控制是否显示断胶超限,胶宽,少胶区域 3、实现思路卡尺的检测区域CenterX CenterY=前一个卡尺工具获取到的中点的延长线L(延长线角度为R,L为两个卡尺的间 距,手动设定) 仅提供一种思路方法,自己的产品请参考根据实际自行修改。 ,核心关键词:VisionPro算法; 涂胶检测; 模板轨迹; 断胶超限; 胶宽检测; 少胶区域检测; 实现方式ToolBlock; C#高级脚本; 卡尺检测区域; CenterX CenterY; 延长线L; 角度R。,基于VisionPro算法的自动涂胶检测系统
2025-04-25 20:19:39 556KB ajax
1
内容概要:本文介绍了如何使用遗传算法(GA)、灰狼优化算法(GWO)和麻雀搜索算法(SSA)优化支持向量机回归(SVR)模型,并提供了详细的Matlab代码实现。文章涵盖了数据准备、参数优化、模型训练、预测及结果可视化的全过程。通过对三种优化算法的性能对比,展示了各自的优势和特点。具体步骤包括:读取Excel数据,划分训练集和测试集,定义优化参数范围,使用相应优化算法找到最佳参数,训练SVR模型,进行预测并计算误差指标如MSE、MAE、RMSE和R²。最终通过图表形式直观呈现不同算法的预测效果和误差对比。 适合人群:具有一定编程基础,熟悉Matlab编程环境,从事数据分析、机器学习领域的研究人员和技术人员。 使用场景及目标:适用于需要提高支持向量机回归模型预测精度的应用场景,特别是那些希望通过引入优化算法改善模型性能的研究项目。目标是在多个候选优化算法中选择最适合特定任务的最佳方案。 其他说明:文中提供的代码可以直接应用于实际数据集,只需替换相应的数据文件路径即可。此外,强调了数据归一化的重要性,指出这是确保模型正常工作的关键步骤之一。
2025-04-25 16:49:35 894KB
1
内容概要:本文详细介绍了在Carsim和Simulink联合仿真环境中,利用线性二次型调节器(LQR)算法进行自动驾驶车辆横向控制的方法和技术细节。首先,通过MATLAB函数实现了LQR的设计,重点讨论了状态方程和二次型代价函数的应用,特别是针对不同车速条件下的时变处理。接着,文章深入探讨了状态变量的选择、权重矩阵Q和R的配置以及速率限制器的设置,强调了这些因素对控制系统性能的影响。此外,还提到了一些调试技巧和常见问题的解决方案,如数值稳定性和模型线性化。最后,通过多个实际案例展示了LQR算法的有效性和优越性,特别是在高速变道和紧急情况下的表现。 适合人群:从事自动驾驶研究的技术人员、汽车工程领域的研究人员、对控制理论感兴趣的高级工程师。 使用场景及目标:适用于希望深入了解自动驾驶横向控制原理的研究人员和技术开发者,旨在帮助他们掌握LQR算法的具体实现方法,提高车辆路径跟踪的精确度和平顺性。 其他说明:文中提供了大量MATLAB代码片段和调试建议,有助于读者更好地理解和应用所介绍的技术。同时,文章还分享了一些实战经验和教训,为相关项目的实施提供宝贵的参考。
2025-04-25 11:18:42 738KB LQR算法
1
基于RRT的路径规划优化及RRT改进策略探讨,改进RRT路径规划算法研究:优化与性能提升的探索,改进RRT 路径规划 rrt 改进 —————————————— ,改进RRT; 路径规划; rrt 改进,改进RRT路径规划算法研究 在现代机器人技术与自动化领域中,路径规划算法扮演着至关重要的角色,它直接影响着机器人的移动效率与执行任务的能力。快速随机树(Rapidly-exploring Random Tree,简称RRT)算法因其在高维空间中的高效性,成为了研究者们关注的焦点。RRT算法的基本思想是通过随机采样的方式构建出一棵不断延伸的树,逐步覆盖整个空间,最终找到一条从起点到终点的路径。 然而,传统的RRT算法在处理复杂环境或具有特定约束条件的问题时,可能存在效率不高、路径质量不佳等问题。因此,对RRT算法的优化与改进成为了学术界和工业界研究的热点。优化的方向主要包括提升算法的搜索效率、降低路径长度、提高路径质量、增强算法的实时性以及确保算法的鲁棒性等方面。 在探索路径规划算法的改进之路上,研究者们提出了各种策略。比如,通过引入启发式信息来引导采样的过程,使得树能够更快地向着目标区域生长;或者通过优化树的扩展策略,减少无效的探索,从而提高算法的效率。此外,还有一些研究集中在后处理优化上,即在RRT算法得到初步路径后,通过一些路径平滑或者优化的技术来进一步提升路径的质量。 针对特定的应用场景,如机器人在狭窄空间中的导航、多机器人系统的协同路径规划等,研究人员也提出了许多创新的改进方法。例如,可以在RRT的基础上结合人工势场法来处理局部路径规划中的动态障碍物问题,或者设计特定的代价函数来考虑机器人的动力学特性。 在研究的过程中,学者们还开发了许多基于RRT算法的变体。例如,RRT*算法通过引入回溯机制来改进路径,使得最终的路径不仅连接起点和终点,还能在保持连通性的同时,追求路径的最优化。还有RRT-Connect算法、Bi-directional RRT算法等,这些变体在保证RRT算法的基本特性的同时,通过一些策略上的调整来提升算法性能。 路径规划算法的研究领域充满了挑战与机遇。RRT算法及其改进策略的研究不仅为机器人导航提供了解决方案,也为其他领域如无人机飞行路径规划、智能车辆的自动驾驶等提供了借鉴。随着计算机技术的发展和算法的不断进步,我们可以预期未来的路径规划算法将会更加智能、高效和鲁棒。
2025-04-25 09:46:06 1.81MB rpc
1
EBWO改进白鲸算法, 一种混合改进的白鲸优化算法 EBWO算法 改进点:两个点 1、引入准反向学习QOBL策略,提高算法的迭代速度 2、引入旋风觅食策略,提高算法开发能力 改进后的EBWO算法与原始BWO、GWO、WOA、SSA进行对比 效果好的不是一点点 包含23种基准测试函数均有 在当今快速发展的信息时代,优化算法作为解决复杂问题和提高系统性能的关键技术,一直受到广泛关注。白鲸优化算法(BWO)是近年来提出的一种新型智能优化算法,它模仿了白鲸捕食的行为,通过模拟白鲸在海洋中的觅食行为来解决优化问题。然而,像其他算法一样,BWO算法在实际应用中也存在一定的局限性,比如搜索效率和开发能力的不足。因此,为了克服这些缺陷,研究者们不断地对BWO算法进行改进和优化,EBWO(改进白鲸优化算法)应运而生。 EBWO算法引入了两个重要的改进策略:准反向学习(QOBL)策略和旋风觅食策略。QOBL策略的引入显著提高了算法的迭代速度。传统算法在优化过程中往往会陷入局部最优解,而无法快速跳出,导致效率低下。QOBL策略通过模仿自然界中动物的反向逃逸行为,允许算法在遇到不利于搜索的方向时,能够迅速调整方向,从而加快迭代速度,提高全局搜索能力。EBWO算法还引入了旋风觅食策略,这增强了算法的开发能力,即在找到全局最优解的邻域后,能更深入地挖掘这个区域,提高解的质量。这一策略使得EBWO算法能够在高维搜索空间中更加灵活和高效地找到问题的最优解。 通过与其他先进算法,如灰狼优化算法(GWO)、鲸鱼优化算法(WOA)和沙蚤算法(SSA)等的对比分析,EBWO算法在多种基准测试函数上的表现均优于它们。这表明,改进后的EBWO算法能够更有效地解决工程和科学领域中遇到的各种复杂优化问题。 此外,为了更好地理解和分析EBWO算法,在技术支持文档中也包含了算法的详细介绍和解析,以及对算法性能的详细评估。文档中提及的23种基准测试函数,覆盖了不同类型的优化问题,从简单的单峰函数到复杂的多峰函数,这些测试函数的使用有助于全面评估EBWO算法在各种条件下的性能。 通过这些基准测试函数的评估,我们可以看到EBWO算法不仅在理论上具有创新性,而且在实际应用中也显示出了良好的性能和强大的竞争力。它为解决各种工程优化问题提供了新的思路和方法,对于推动优化算法的发展具有重要意义。 EBWO算法作为一种混合改进的白鲸优化算法,通过引入QOBL策略和旋风觅食策略,有效提高了算法的搜索效率和开发能力。该算法在与多个先进算法的性能对比中表现出色,为解决优化问题提供了新的选择。随着算法在各个领域的广泛应用,相信EBWO算法将会推动相关技术的进步,并在实际工程问题中发挥重要作用。
2025-04-24 20:25:56 440KB
1
基于遗传算法的带充电桩电动汽车路径规划系统:支持软时间窗、多目标点及成本优化,基于遗传算法的电动汽车带充电桩路径规划VRPTW问题研究:软时间窗、时间窗惩罚、多目标点与充电功能的集成及Matlab程序实现,遗传算法求解带充电桩的电动汽车路径规划VRPTW问题 具有的功能 软时间窗,时间窗惩罚,多目标点,充电,遗传算法 生成运输成本 车辆 路线 带时间窗,注释多,matlab程序 代码有详细注释,可快速上手。 ,关键信息提取的关键词如下: 遗传算法; VRPTW问题; 充电桩; 电动汽车路径规划; 软时间窗; 时间窗惩罚; 多目标点; 充电; 运输成本; 车辆路线; 代码注释; Matlab程序。 以上关键词用分号分隔为: 遗传算法; VRPTW问题; 充电桩; 电动汽车; 路径规划; 软时间窗; 时间窗惩罚; 多目标点; 运输成本; 车辆路线; 代码详细注释; Matlab程序。,遗传算法在电动汽车带充电桩的VRPTW路径规划中的应用
2025-04-24 14:00:35 711KB 哈希算法
1
【优化覆盖】基于matlab蜣螂算法DBO求解无线传感器WSN覆盖优化问题【含Matlab源码 3567期】.mp4
2025-04-23 20:45:37 4.42MB
1
MATLAB环境下基于数据驱动与协方差驱动的随机子空间结构模态参数识别方法,多领域应用,程序已优化可运行。,MATLAB环境下基于数据驱动与协方差驱动的随机子空间结构模态参数识别方法——适用于土木、航空航天及机械领域,MATLAB环境下基于数据驱动的随机子空间(SSI-DATA)和协方差驱动的随机子空间(SSI-COV)的结构模态参数识别方法,可用于土木,航空航天,机械等领域。 本品为程序,已调通,可直接运行。 ,MATLAB; 随机子空间; 结构模态参数识别; 数据驱动; 协方差驱动; 土木、航空航天、机械领域。,MATLAB程序:基于数据与协方差驱动的随机子空间模态参数识别法
2025-04-23 15:43:48 1.63MB sass
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-04-23 00:50:47 4.3MB matlab
1
新能源接入的电力市场主辅联合优化出清模型:基于IEEE30节点与风电机组的经济调度与备用服务策略分析,新能源接入的电力市场主辅联合优化出清模型:基于IEEE30节点与风电机组的经济调度与备用服务市场分析,《新能源接入的电力市场主辅联合出清》 出清模型以考虑安全约束的机组组合模型(SCUC)和经济调度模型(SCED)组成。 程序基于IEEE30节点编写,并接入风电机组参与电力市场,辅助服务市场为备用市场。 出清后可得多种结果,包括机组计划,风机出力,线路功率等。 Eand_0R_UC.m 这个程序主要是一个机组组合问题的求解程序,用于优化电力系统中火电机组和风电机组的出力调度,以最小化成本为目标。下面我将对程序进行详细分析。 首先,程序开始时进行了一些初始化操作,包括清除变量、加载参数和数据。参数包括机组参数、负荷曲线、网络参数和风电参数等。然后,定义了一些系统参数,如机组数、风电机组数、节点数和时间范围等。 接下来,程序定义了一些决策变量,包括机组状态变量u、机组实时功率p、机组实时最大功率Pmax、机组实时最小功率Pmin、风电机组实时功率Pw、机组启动成本costH、机组关停成
2025-04-22 14:34:23 7.85MB kind
1