为了能正确检测显著性图中的多个显著性目标,提出了一种基于全局颜色对比的显著性目标检测算法。该算法首先提取图像的全局颜色对比度特征,然后把显著性图和全局颜色对比度作为特征输入条件随机场框架中,得到二值显著性掩模,最后经区域描绘子计算得到包含显著性目标的最小外接矩形。在两种公开的数据集上的实验结果表明,该算法在精度、召回率以及F-测度方面的表现优于现有其他几种算法,在计算效率上也具有一定的优势。因此,所提出的算法在检测效果上优于现有的显著性目标检测算法,而且还能够检测到多个显著性目标。
1
针对传统基于像素的显著性模型存在的边缘模糊、不适于低对比度环境等问题,提出一种基于双目视觉信息的显著性区域检测方法.采用简单线性迭代聚类(SLIC)方法对图像进行超像素分割,将生成的超像素区域进行合并.通过计算各区域在左右视图的相对移动距离获取物体深度信息,以区域为单位分别计算颜色对比度及深度对比度,进行合成得到区域的显著性值.结果表明,生成的显著性图轮廓清晰,边缘锐利,同等条件下近处及深度变化显著的区域能够获得更高的显著性.该方法符合人类视觉感知特征,适用于移动机器人障碍物检测及场景识别.
1
显著目标检测技术的研究,其基础性算法还是比较单一的,这是本人在各为专家的基础之上写的代码,简洁易行,运行顺畅!
2021-10-18 16:17:49 3.28MB 显著目标检测
1