改进型分水岭算法,用欧几里得进行二值化构建背景标记图,用梯度分割构建前景标记,运用局部最大值最小值,将背景前景标记图合成,再进行分水岭算法的运算
1
从高分辨率遥感影像中提取单木树冠信息能够有效提高森林资源的调查与管理水平; 针对现有单木树冠提取方法对郁闭度较高的阔叶林提取精度低的问题, 提出一种基于迭代H-minima改进分水岭算法的高分辨率遥感影像单木树冠提取方法; 首先利用形态学开操作对图像进行平滑处理, 采用Sobel算子提取梯度图像, 并利用均值滤波进行去噪处理; 然后利用一组h值在梯度图像上迭代识别树冠标记, 利用虚假标记检测方法过滤无效标记; 最后引入对称原则来限制分水岭算法的淹没过程, 避免树冠标记过生长与无标记树冠合并; 以高分辨率遥感影像作为数据源, 同时采用传统的标记控制分水岭算法和所算法提取单木树冠, 从单木位置和树冠轮廓两个方面, 以及样地和单木两个尺度上对单木树冠提取的精度进行评价。结果表明:所提算法提取树冠的F测度为92.71%, 比标记控制分水岭算法提高了31.99%; 所提算法能够有效抑制过分割、减少欠分割, 从而提高单木树冠的提取精度。
2021-12-29 10:57:57 9.4MB 遥感 单木树冠 H-minima 高分辨率
1
为了解决煤泥浮选泡沫图像分割中传统分水岭算法的过分割问题,提出了一种基于自适应标记提取的改进分水岭算法。该方法首先对浮选泡沫图像进行高斯滤波,再运用基于形态学的扩展最大值技术从泡沫图像中自适应提取标记,利用标记对梯度图像进行修改,最后使用分水岭算法对修正后的梯度图像进行分割。试验结果表明,改进后的算法克服了标记提取需要先验知识、分割过程繁琐等问题,使参数选取更加合理,分割结果更加准确。
1
面向参数测量的改进分水岭浮选泡沫图像分割方法
2021-02-24 18:05:11 2MB 研究论文
1