### 红外发射与接收电路设计 #### 知识点概述 红外发射与接收电路在日常生活中的应用非常广泛,例如遥控器、自动感应设备等。本篇文章将围绕一个简单的基于C51单片机的红外接收与发射电路进行详细解析,包括其工作原理、电路设计要点以及实际应用中的注意事项等内容。 #### 工作原理简介 红外线是一种不可见光,其波长范围在760纳米到1毫米之间。红外通信主要利用的是波长在850至950纳米之间的近红外线。红外发射电路主要是通过红外LED(发光二极管)将电信号转换为光信号,而红外接收电路则是通过红外光电二极管或光电三极管将接收到的光信号转换回电信号,并通过放大等处理环节最终实现信号的识别。 #### 电路设计要点 **红外发射电路:** 1. **选择合适的红外LED**:红外LED是发射电路的核心部件,选择时需考虑其工作电压、电流及发射波长等因素。 2. **驱动电路设计**:为了确保红外LED能够稳定工作,需要设计合理的驱动电路。通常采用三极管或场效应管作为开关元件来控制LED的工作状态。 3. **编码与调制**:在实际应用中,通常需要对传输的数据进行编码和调制,以提高抗干扰能力和传输距离。常用的调制方式有脉冲宽度调制(PWM)和脉冲位置调制(PPM)等。 **红外接收电路:** 1. **红外接收模块的选择**:市场上常见的红外接收模块包括光电二极管和光电三极管。光电三极管由于增益高、灵敏度好等特点,在远距离传输场合更为常见。 2. **前置放大器**:接收端接收到的信号往往很弱,因此需要设计前置放大器来增强信号。常用的放大器件包括运放和三极管。 3. **解码与解调**:接收到的信号经过放大后还需要通过解调和解码恢复原始数据。这一过程通常由专用芯片完成,如NEC协议解码芯片。 #### 实际案例分析 根据给定的部分内容,我们可以推测该文档提供了一个具体的电路设计方案: - **单片机型号**:STC89C52,这是一款基于8051内核的高性能单片机,具有丰富的I/O口资源和较高的运算速度,非常适合用于红外通信系统的控制部分。 - **发射电路**:通过观察文档中的部分电路图可以发现,发射电路采用了1KΩ的电阻(R1)作为限流电阻,连接了红外LED(D1)。这种设计简单且易于实现,能够满足基本的红外发射需求。 - **接收电路**:接收端使用了光电三极管(S8)作为核心元件,配合10KΩ的电阻(R2)构成简单的放大电路。此外,电路还包含了一些电容(C1、C2)用于滤波,提高了接收信号的质量。 - **其他组件**:文档中还提到了一些其他电子元器件,如30pF的电容(C1、C2)用于高频滤波,10μF的电容(C?)用于电源滤波等。 #### 注意事项 1. **红外LED的功率限制**:选择适当的限流电阻值非常重要,以避免红外LED因过载而损坏。 2. **电路布局**:在PCB设计时应特别注意信号线的布线,避免信号干扰。 3. **环境因素的影响**:红外通信易受光线强度变化、灰尘等环境因素的影响,设计时应采取相应的措施来提高系统的鲁棒性。 红外发射与接收电路设计涉及到多个方面,包括硬件选型、电路设计以及软件编程等。通过对上述内容的深入理解和掌握,可以更好地应用于实际项目开发中。
2025-05-17 16:06:16 68KB 红外发射器
1
1 引言 在某些射频产品的生产调试车间,空间某些频段的射频(RF)干扰信号可能对生产和调试造成影响。因此,有必要设计一种信号测试仪检测空间RF信号的强度。本文所设计的信号测试仪具有以下基本功能: 测试频率范围1 MHz~30 MHz; 能够灵活地在该频段上步进扫描; 具有方便的人机交互界面,可以通过键盘输入各种预设值,通过液晶显示屏随时查看系统的工作状态等。 本设计采用超外差接收方式。空间信号通过天线接收后,首先经过滤波和前置放大,与本地振荡信号混频后得到中频信号。再对中频信号进行选频、放大、检波,得到直流电压即信号的强度。经A/D转换送入CPU处理。 在本设计中,混频电路是设计 在电源技术领域,基于SA605和AD9850的接收电路设计是一个关键的应用,主要用于射频信号的检测和分析。这种设计通常应用于生产调试车间,以检测和排除可能干扰射频产品生产的RF干扰信号。信号测试仪是解决这一问题的工具,它的核心功能包括测试1 MHz至30 MHz的频率范围,步进扫描指定频段,以及提供用户友好的人机交互界面,允许通过键盘输入预设值,并通过液晶显示屏实时监控系统状态。 设计采用超外差接收方式,这是一种常见的射频接收技术。在这个过程中,来自天线的射频信号首先通过滤波和前置放大,随后与本地振荡器产生的信号进行混频,生成中频信号。中频信号再经过选频、放大和检波,转化为直流电压,从而反映信号强度。这个直流电压经过A/D转换,被送入中央处理器(CPU)进行进一步的处理和分析。 混频电路在设计中扮演了核心角色。它包含了信号的预处理、本地振荡信号的生成、混频操作以及中频滤波等多个环节。传统的扫频信号发生器常常使用压控振荡器(VCO),通过改变变容二极管的电压来调整本振频率,但这种方式在精度和扫频宽度上存在局限。因此,本设计引入了直接数字频率合成(DDS)技术,采用ADI公司的AD9850芯片与微控制器(MCU)协同工作,能够生成精确且可编程的扫频振荡源。 AD9850是一个高度集成的DDS频率合成器,内部集成了可编程系统和高速比较器,可实现全数字控制的频率合成。其工作原理基于相位累加器,通过相位累加器的递增和相位控制字的输入,驱动正弦查询表生成模拟信号。频率控制字的计算决定了输出频率,而AD9850高达40 MHz的输出频率和超过50 dB的信噪比(SFDR)使其适合作为本地振荡源。 另一方面,Philips公司的SA605是一款高性能、低功耗的混频器和FM IF器件,特别适用于通信接收机、RF信号强度测量和频谱分析仪等。SA605内置混频器、振荡器、限幅中频放大器、积分检波器、静噪功能、RSSI指示和电压校准器。其低功耗特性(6 V时典型电流5.7 mA)、高混频增益(在45 MHz时为13 dB)和宽动态范围(RSSI的90 dB)使得SA605成为理想的选择。在本设计中,SA605接收天线的RF信号并与AD9850产生的本地振荡信号混频,产生465 kHz的中频信号,经过滤波和放大后,提供后续处理。 实际设计方案中,SA605与AD9850共同构成空间RF信号接收器的混频部分。RF输入配置连接天线接收的信号,经过初步过滤,然后与AD9850产生的本地振荡信号进行混频,生成中频信号,最终通过中频滤波器选择出所需频段的信号。 这款基于SA605和AD9850的接收电路设计,结合了DDS技术和高性能混频器,实现了精确、高效且适应性强的射频信号测试,有效地解决了射频产品调试车间的干扰检测问题。通过这样的设计,可以提高生产效率,保证产品的质量和性能。
2025-04-15 16:45:04 245KB 电源技术
1
NFC电子钱包功能是以手机为交易平台 ,由NXP PN544 NFC控制器 (PN65O内置了安全模块)和安全模块两大部分实现移动支付及数据交换功能,为电子支付提供便捷、安全、超凡体验。本文主要分享了一种实用的NFC电子钱包解决方案。
2024-03-22 22:20:13 68KB NFC 接收电路 电子钱包 通信新闻
1
摘要:本文介绍了一种多探头双频超声波接收电路的设计方案, 该方案中的接收电路由前级放大电路,开关切换电路,带通滤波电路和后级放大电路组成。DSPIC单片机负责控制,接收电路多对一分时切换。采用了收发隔离电路,使得超声波探头可以工作在收发一体的工作方式,有效的节约了电路和探头的成本。经验证,本方案具备成本低,简单高效,并具有良好的扩展性。   1.引言   现代渔业主要利用探鱼器来探测水下鱼类资源的分布,提高捕鱼业的产量。探鱼器利用的就是超声波探测的原理,由超声波探头根据需求发射出相应频率的超声波,超声波在遇到水中不同障碍物后反射回来,被探头接收。根据对反射数据的分析,终得到该水域的信息。随
1
TR40系列超声波电路,包括发射电路,接收电路等详解,可以累死电路参考
1
胎压侦测系统(Tire Pressure Monitor System)是一项提高汽车主动安全性的新技术。它运用了最新的汽车电子技术、传感器技术、无线发射和接收技术等。TPMS能实时监测所有轮胎的气压,对气压过低、气压过高以及快速漏气等异常状态及时发出报警。 一、实物位置图:二、胎压过高或过低的危害:三、TPMS分为直接式、间接式、复合式三种:1、直接式(Pressure-Sensor Based TPMS,简称PSB): 利用安装在每一个轮胎里的压力传感器来直接测量轮胎的气压,利用无线发射器将压力信息从轮胎内部发送到中央接收器模块上。当轮胎气压太低或漏气时,系统会自动报警。属于事前主动防御。 2、间接式(Wheel-Speed Based TPMS,简称WSB): 通过汽车ABS 系统的轮速传感器来比较轮胎之间的转速差别,以达到监测胎压的目的。当轮胎压力降低时,车辆的重量会使轮胎直径变小,这就会导致车速发生变化,这种变化即可用于触发警报系统来向司机发出警告。属于事后被动型。 3、复合式TPMS: 在两个互相成对角的轮胎内装备直接传感器,并装备一个4轮间接系统。与全部使用直接系统相比,这种复合式系统可以降低成本,克服间接系统不能检测岀多个轮胎同时岀现气压过低的缺点。但是,它不能像直接系统那样提供所有4个轮胎内实际压力的实时数据。 四、TPMS安装方式分为内置式、外置式:内置式安装方式比传统的外置式安装方式更加准确(外置式只能测量大概的轮胎温度),且内置式按装,充气方便,行驶中不因路坑的碾压损坏。 五、TPMS工作原理简介:直接式、内置发射模块: 将LF唤醒技术运用到发射块中,汽车开动后,驾驶室内的中央控制模块上电,发射低频信号,轮胎发射模块里的LF天线接收到低频信号后产生感应电压,转换为唤醒信号,唤醒MCU开始工作,这样起到节省电池的效果。 LF唤醒子系统: TPMS接收机-TPMS接收模块: 接收模块外接车载电源,接收天线负责接收无线信号,RF接收电路将高频信号解码后送给中央处理器。中央处理器从数据包中分析发射模块的ID号、压力温度数据及其他数据信息。如果ID号和码模块中的ID信息相匹配,则对其进行处理并送显示。如果不是本车轮胎的数据则丢弃,不予处理。 TPMS发射器-发射模块组成: 轮胎压力监测模块由五个部分组成: 1.具有压力、温度、加速度、电压检测和后信号处理ASIC芯片组合的智能传感器MCU。 2.锂亚电池。 3.天线。 所有器件、材料都要满足-40℃~+125℃的使用温度范围 转载自唯样电子资讯。
1
超再生式接收电路课设报告 protel课程设计报告
2023-03-03 11:25:37 2.02MB 超再生式
1
OOK 调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。   早期的发射机较多使用LC 振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。      图一     图二
1
电子线路设计与制作
2022-11-15 14:21:55 7.32MB 电子线路 线路设计
电子线路设计与制作
2022-11-04 09:05:38 5.91MB 电子线路 线路设计