基于协同过滤的电子商务推荐系统极易受到托攻击,托攻击者注入伪造的用户模型增加或减少目标对象的推荐频率,如何检测托攻击是目前推荐系统领域的热点研究课题.分析五种类型托攻击对不同协同过滤算法产生的危害性,提出一种特征选择算法,为不同类型托攻击选取有效的检测指标.基于选择出的指标,提出两种基于监督学习的托攻击检测算法,第一种算法基于朴素贝叶斯分类;第二种算法基于k近邻分类.最后,通过实验验证了特征选择算法的有效性,及两种算法的灵敏性和特效性.
1
针对托攻击提出一种半监督托检测模型,对标记用户分类计算簇中心,给出中心用户相似度特征属性。对不同攻击选择合适的特征指标,把输入用户划分到不同的簇集中,通过簇集中输入用户全部评分项为最大值的均值与标记用户对该项均值差,确定攻击项。依据特征指标对不同簇集进行两次分类,进而确定攻击对象。实验证明,该检测算法对不同的托攻击有较高的检测准确率。
2022-02-28 10:37:56 624KB 推荐系统 托攻击 特征指标 半监督 聚类
1