STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计中。在STM32的开发过程中,延时函数是必不可少的一部分,它用于控制程序执行的精确时间,比如在LED闪烁、定时任务或者通信协议中。本资料主要介绍了如何在STM32的HAL库中实现微秒和毫秒级别的延时。 HAL库,全称为Hardware Abstraction Layer(硬件抽象层),是ST公司提供的一种统一的API接口,旨在简化不同STM32系列之间的编程差异,提高代码的可移植性。在HAL库中,延时功能通常是通过`HAL_Delay()`和`HAL_DelayedEntry()`函数来实现的,但这两个函数仅支持毫秒级延时。对于微秒级别的延时,我们需要自定义实现。 在STM32的HAL库中,微秒延时通常涉及到Systick(系统定时器)或者通用定时器的使用。Systick是Cortex-M内核自带的一个定时器,用于实现系统级的延时和时间基准。我们可以通过配置Systick的Reload值和当前计数值,结合中断服务程序,来实现微秒级别的延时。 以下是一个基本的微秒延时函数的实现思路: 1. 初始化Systick,设置其时钟源为HCLK,通常为系统的主频,例如72MHz。 2. 计算出1微秒对应的计数器减计数事件数,这可以通过`SystemCoreClock / 1000000`计算得出。 3. 在延时函数中,根据需要的微秒数,计算出Systick计数器需要减掉的次数。 4. 设置Systick的Reload值,使其在特定时间后产生中断。 5. 启动Systick并进入循环等待,直到中断发生,然后清除中断标志。 对于毫秒延时,`HAL_Delay()`函数已经为我们提供了便利。它内部也是基于Systick或通用定时器实现,但用户无需关心具体的实现细节,只需传入所需的延时毫秒数即可。 在实际应用中,需要注意的是,由于处理器执行指令的时间和中断处理的开销,以及时钟精度等因素,实际的延时可能会略长于预期。因此,在设计关键路径的延时时,需要留有一定的余量。 在项目开发中,为了提高代码的可读性和可维护性,可以将这些延时函数封装到一个单独的文件或模块中,如本压缩包中的`delay_us.c`和`delay_us.h`。`delay_us.c`通常包含上述微秒延时函数的具体实现,而`delay_us.h`则提供对外的头文件声明,供其他模块调用。 STM32的HAL库提供了方便的毫秒级延时函数,而对于微秒级延时,需要根据具体需求和硬件资源自行设计。理解底层原理并合理利用HAL库,能够帮助开发者更高效地完成STM32的延时控制。
2026-01-23 20:09:14 638B stm32
1
在Delphi编程环境中,开发人员有时需要在程序执行过程中插入短暂的延时,以便实现某种等待效果或避免过于频繁的操作。传统的Windows API函数`Sleep()`常用于此目的,但使用`Sleep()`会阻塞应用程序的消息循环,导致界面无响应,给人一种“死机”的感觉。为了克服这个问题,Delphi提供了其他延时函数,如`TThread.Sleep()`和异步回调等方法,这些方法可以在延迟执行的同时保持界面的响应性。 1. `TThread.Sleep()`:这是Delphi中推荐的延时函数,它是由VCL(Visual Component Library)提供的。`TThread`是Delphi中的线程类,`Sleep()`方法是其成员,它接受一个参数,单位为毫秒。与Windows API的`Sleep()`不同,`TThread.Sleep()`允许消息泵继续运行,因此不会阻塞用户界面的更新。例如: ```delphi uses Classes; procedure TForm1.Button1Click(Sender: TObject); begin TThread.Sleep(5000); // 延时5秒 // 在这之后的代码将在5秒后执行 end; ``` 2. 异步回调和Timer组件:另一种实现非阻塞延时的方法是使用异步回调或者Timer组件。例如,可以创建一个定时器,在指定时间间隔后触发事件,而不会影响主线程的消息处理。这样,用户界面可以保持活跃,同时程序能按照设定的时间进行操作: ```delphi uses Vcl.Timers; procedure TForm1.FormCreate(Sender: TObject); begin Timer1.Interval := 5000; // 设置5秒间隔 Timer1.OnTimer := Timer1Timer; // 设定回调函数 Timer1.Enabled := True; // 启动计时器 end; procedure TForm1.Timer1Timer(Sender: TObject); begin // 延时5秒后执行的代码 Timer1.Enabled := False; // 停止计时器,防止重复触发 // ... end; ``` 3. 使用异步编程库:如`System.Threading`单元,其中的`TTask`类提供了异步任务处理,也可以实现延时功能: ```delphi uses System.Threading; procedure TForm1.Button1Click(Sender: TObject); begin TTask.Run( procedure begin TThread.Sleep(5000); // 延时5秒后执行的代码 end); end; ``` 4. 自定义延时函数:如果你希望自定义一个延时函数,可以使用`TInterfacedObject`和`IDelayedAction`接口来创建一个异步延时服务,这样可以灵活地控制延时行为: ```delphi type IDelayedAction = interface ['{C98E73D1-627D-4A8F-BB5A-E2F95677829C}'] procedure Execute; end; procedure DelayExecute(const Action: IDelayedAction; DelayInMilliseconds: Cardinal); var Task: ITask; begin Task := TTask.Create(procedure var LAction: IDelayedAction; begin LAction := Action; TThread.Queue(nil, procedure begin LAction.Execute; end); end); Task.Start; TThread.Sleep(DelayInMilliseconds); end; // 使用自定义延时函数 var MyDelayedAction: IDelayedAction; begin MyDelayedAction := TMyDelayedAction.Create; try DelayExecute(MyDelayedAction, 5000); // 延时5秒 finally MyDelayedAction.Free; end; end; ``` Delphi提供了多种方法来实现非阻塞的延时,以确保用户界面的响应性。根据实际需求和项目规模,可以选择最适合的延时解决方案。
2024-10-10 20:51:45 171KB delphi延时 sleep sleep函数delphi 延时函数
1
STM32延时函数在嵌入式开发中扮演着至关重要的角色,特别是在实时性和精确性要求较高的应用中。本文将详细解析标题和描述中提到的毫秒延时和微秒延时实现方法,并探讨如何在STM32系统中有效地使用它们。 STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于工业、消费电子和个人开发项目。在这些应用中,精准的延时控制是必不可少的,例如在定时任务、通信协议、传感器采样等场景。 毫秒延时通常采用Systick定时器实现。Systick是Cortex-M系列处理器内置的一个系统定时器,它可以提供一个固定的时基,用于实现系统级的延时或周期性任务。在STM32中,我们可以配置Systick以1ms的周期产生中断,通过在中断服务程序中累加计数,当达到预设的毫秒数时,完成延时。具体步骤包括: 1. 初始化Systick,设置其时钟源和分频因子,使其每1ms产生一次中断。 2. 在Systick的中断服务程序中,增加一个全局变量表示已过的毫秒数。 3. 在需要延时的函数中,检查全局变量是否达到设定值,未达到则返回,达到则继续执行后续代码。 微秒延时则通常通过插入空指令(如__nop())来实现。__nop()是汇编指令,它执行时不进行任何操作,仅消耗CPU时钟周期。由于每个微控制器的时钟周期不同,所以要精确计算出多少个__nop()能产生所需的微秒延时,需要知道CPU的时钟速度。例如,如果CPU工作在72MHz,那么一个__nop()大约消耗14ns,1us需要72个__nop()。因此,编写微秒延时函数时,需要根据目标系统的时钟频率动态计算__nop()的数量。 为了提高延时精度,还可以结合系统时钟和循环计数来实现更精确的微秒延时。例如,可以先用一个固定数量的__nop()执行大部分延时,然后通过计数器计算剩余的微秒数。 在实际开发中,需要注意以下几点: 1. Systick作为系统定时器,可能会与其他系统功能冲突,如FreeRTOS的Tick定时器。合理配置Systick以避免影响其他系统服务。 2. 基于__nop()的微秒延时适用于较短的延时,对于较长的延时,可能因堆栈深度限制而无法实现。 3. 考虑到CPU负载和其他中断的影响,实际延时可能会与理论值有所偏差,因此在关键应用中需要进行校准。 通过理解和掌握这两种延时函数的实现原理,开发者可以更好地在STM32项目中实现精确的定时任务,提升系统性能和可靠性。在实际项目中,可以参考"01_延时函数"这样的资料,学习和实践这些延时技术。
2024-07-06 16:36:09 265KB stm32 delay 延时函数
1
51单片机的一些常用的延时函数,比较常用,希望大家参考
2024-03-02 21:11:27 10KB 延时函数
1
官方库延时函数误差太大,近2倍,在此基于嘀嗒定时器做了毫秒、微妙级别的两个延时函数。 1、可用在IO口模拟串口等要求时序操作的场景,如DHT11单总线、模拟I2C、SPI等。已经在温湿度传感器DHT11上做了测试。 2、例程中“time.c" 创建了 系统节拍模型,可用来实现 某些函数 每间隔一定时间运行1次 的功能。可实现 【时间片轮】模型的 单片机系统结构,执行效率高,避免阻塞延时
2023-03-12 23:10:49 1.97MB mcu 单片机 嵌入式硬件 延时函数
1
参考了51单片机 Keil C 延时程序的简单研究,自己也亲身测试和计算了一些已有的延时函数
2023-02-27 13:01:00 385KB C51 单片机 延时函数 文章
1
用于C单片机的延时,是学单片机延时的必备呀
2022-05-10 23:23:16 15KB C语言延时函数
1
这是一个常用的延时功能模块,编程有一 定的用处。
2022-05-10 23:21:17 600B delay
1
// Function : XSleep() // Purpose : To make the application sleep for the specified time // duration. // Duration the entire time duration XSleep sleeps, it // keeps processing the message pump, to ensure that all // messages are posted and that the calling thread does // not appear to block all threads!
2022-04-24 16:24:18 7KB XSleep
1
基于STM32滴答定时器的精确延时函数,分享给大家
2022-04-10 18:56:21 830B STM32 延时函数
1