介绍
未来数据的预测在能源领域非常重要,因为有关未来消费和发电趋势的信息可以帮助规划电厂的运营。 该分析比较了各种模型进行时间序列预测,以确定哪种模型效果最好
数据
数据来自Kaggle: ://www.kaggle.com/robikscube/hourly-energy-consumption包含兆瓦(MW)中各种电力公司的能耗读数。 代顿数据集已用于此分析。 但是,最后将包含所有电力公司数据的主数据集用于实验模型。
数据探索
数据从2005年到2018年大约开始,并且每小时记录一次。
分析
使用的4个模型是FBProphet,XGBoost,递归神经网络(RNN)和长期短期记忆(LSTM)(RNN的变体)。数据在使用前已进行了标准化。 FBProphet,RNN和LSTM模型可以按原样使用时间戳数据,但是XGBoost需要将时间戳分解为单独的组件。 所有这些模型都已在Dayton数
2023-01-04 09:35:01
467KB
1