### 多功能低功耗精密单端转差分转换器详解 #### 一、概述 在许多现代电子系统中,为了提高信号质量和抗干扰能力,通常需要将单端信号转换成差分信号。本文旨在详细介绍一种多功能低功耗精密单端转差分转换器的设计方法及其应用场景。 #### 二、单端转差分转换器的重要性 单端信号是指相对于公共参考点(通常是地)的信号,而差分信号则是指两个信号之间的差值。差分信号的优势在于: - **抑制共模噪声**:通过使用较大的信号幅度,差分信号能够更好地抑制共模噪声。 - **提高信噪比**:相比单端信号,差分信号可以显著降低二次谐波失真,从而实现更高的信噪比。 - **适用于多种应用场景**:例如驱动现代模数转换器(ADC)、通过双绞线电缆传输信号以及调理高保真音频信号等。 #### 三、基本单端转差分转换器设计 图1展示了一种简单的单端转差分转换器设计,该设计基于AD8476精密低功耗完全差分放大器。AD8476内部集成了精密电阻,简化了电路设计。其主要特点包括: - **差分增益为1**:这意味着输出信号直接反映了输入信号的变化。 - **输出共模电压控制**:通过VOCM引脚上的电压设置输出共模电压。若未接入外部电压,则输出共模电压将由内部1MΩ电阻分压器决定。 - **噪声滤波**:电容C1用于滤除1MΩ电阻引入的噪声,进一步提高信号质量。 - **增益误差**:由于AD8476内部激光调整增益设置电阻,电路的增益误差最大值仅为0.04%。 #### 四、高性能单端转差分转换器设计 对于需要更高性能的应用场景,图2展示了更复杂的单端转差分转换器设计。该设计通过将OP1177精密运算放大器与AD8476级联,并将AD8476的正输出电压反馈至运算放大器的反相输入端来实现。这种方式的优点包括: - **提高输入阻抗**:最大输入偏置电流为2nA,有利于提高输入信号的质量。 - **减小失调电压**:最大失调(RTI)为60µV,最大失调漂移为0.7µV/°C,有助于提高整体精度。 - **反馈环路优化**:大开环增益能够减少AD8476的误差,包括噪声、失真、失调和失调偏移。 #### 五、改进型单端转差分转换器设计 为进一步提高灵活性和性能,图3展示了具有电阻可编程增益的改进型单端转差分转换器设计。这种设计的关键在于: - **增益可调**:通过外部电阻RF和RG,可以调节电路的单端转差分增益。 - **稳定性考虑**:为确保系统的稳定性,必须注意差分放大器和运算放大器的带宽匹配。具体来说,差分放大器的带宽应高于运算放大器的单位增益频率。 - **带宽限制**:如果运算放大器的单位增益频率远大于差分放大器的带宽,则可以通过在反馈路径中加入带宽限制电容CF来改善稳定性。 #### 六、实验结果分析 图4展示了图2中电路在以地为基准的10Hz、1Vp-p正弦波驱动下的输入和输出信号示波图。这些结果证实了设计的有效性和稳定性。 #### 七、结论 多功能低功耗精密单端转差分转换器是一种重要的信号处理组件,在工业控制、通信和音频等领域有着广泛的应用前景。通过合理选择器件和技术方案,可以有效提升信号处理系统的性能和可靠性。未来的研究还可以探索更多创新的技术手段,以满足不断发展的应用需求。
1
"简易差分放大器性能测试装置(B题)" 本资源摘要信息对于简易差分放大器性能测试装置(B题)的设计和制作进行了详细的介绍。该装置主要用于测试差分放大器的性能,包括差模电压放大倍数和共模电压放大倍数的测量、幅频特性测量和差模传输特性测量等。 一、任务 设计并制作一台自动测量场效应晶体管差分放大器性能的简易测试装置。被测差分放大器电路如图 1 所示,自行搭建。 图 1 差分放大器电路 二、要求 1. 基本要求 (1)按图 1 中参数搭建差分放大器电路,并调试使之正常工作。其中晶体管采用 N 沟道小功率场效应晶体管,型号任选不限。(10 分) (2)该装置自行产生测试信号 ui 加在放大器输入端,能够采集放大器输出端的信号 uo,并能够显示信号波形。测试时应用示波器同时监测 4 个输入输出端点 ui+、ui-、uo+、uo-的信号。要求: * 输入差模 uid 类型:DC:0~500mV,10mV 步进;AC:幅度(有效值):0~200mV,10mV 步进,频率:100Hz~300kHz,100Hz 步进。uid 类型、幅度大小和频率可用键盘设置。 * 输入共模 uic 类型:AC:幅度(有效值):2V,频率:1kHz。(20 分) (3)差模放大倍数测量。在 1kHz 频率下测量放大器的差模电压放大倍数 Aud 并记录显示。Aud=Uod/Uid(10 分) (4)共模放大倍数测量。在 1kHz 频率下测量放大器的共模电压放大倍数 Auc 并记录显示。Auc=Uoc/Uic Uic= Ui+ = Ui- =2V 测试共模放大倍数时允许手动改变连接切换输入信号。(10 分) 二、发挥部分 (1)幅频特性测量。连续改变输入信号频率,实时测量并显示放大器电压放大倍数的幅频特性曲线 Aud(f)。给出上限截止频率值并显示记录。(24 分) (2)差模传输特性测量。uid =0~500mV 以 DC 逐点扫描方式测量并显示放大器的差模传输特性(uod 随 uid 变化的关系)曲线。(21 分) (3)其他。(5 分) 三、说明 1. 作品可采用现场提供的直流稳压电源供电。 2. 基本要求(1)调测时可用信号发生器和示波器测量。 3. 测量精度要求:相对误差的绝对值不超过 10% 。 本资源摘要信息对简易差分放大器性能测试装置(B题)的设计和制作进行了详细的介绍,涵盖了差分放大器的基本原理、设计要求和测试方法等方面的知识点。
2025-05-06 12:06:23 139KB 性能测试
1
Pspice 双端 差分放大
2023-05-15 21:30:53 2.2MB Pspice 双端 差分放大
1
全差分反馈放大器(FDA),如美国国家半导体的 LMH6550,LMH6551和全新发布的LMH6552,都可用来为 宽带差分信号提供平衡的低失真放大和电平移位功能。   FDA的简化概念图如图1所示,其中两个正向路径将差分信号的两个互补等分进行放大。由VCM控制的单独共模反馈电 路控制了输入端,设定了与输入共模无关的输出共模电压, 以及强制ON和OP输出幅度相同,相位相反。   LMH6552 FDA是一款1.5 GHz的器件,其采用了美国国 家半导体专有的差分电流反馈(CFB)结构,可在不牺牲带 宽的条件下,工作增益大于单位增益,并具有特别的增益平 坦度。工作在450 MHz,满足0.
1
Multisim版本为14.0,内容包括但不限于: 1、差分放大器 2、可调增益加法器 3、施密特触发器(迟滞比较器) 4、文氏桥振荡器 5、精密峰值检波器 6、方波和三角波产生电路 每个电路均经过验证可行。
1
运算放大器仿真电路例子及模型(反相放大器,差分放大器,振荡器)
2023-03-17 15:44:28 98KB 文档资料 电路仿真
1
关于差分放大器的simulink模型,值得参考学习
2022-12-12 22:57:24 47KB 差分放大器
1
先容一种超高速,宽分频范围的四分频器的设计。后仿真结果表明该四分频器的最高工作频率为37 GHz,当输进信号的幅度为300 mV时,分频范围为27 GHz。在电源电压为1.2 V,工作在37 GHz时,该电路的功耗小于30 mW。该四分频器可应用于光纤通讯和其他超高速电路。
1
三运放差分放大器INA128英文资料,设计参考资料,包含芯片所有参数信息
2022-11-11 20:31:14 1.44MB 差分放大器 INA128
1
能够放大直流信号或变化很缓慢的信号的电路称为直流放大电路或直流放大器。测量和控制方面常用到这种放大器。
1