内容概要:本文档主要介绍了局部特征增强模块(LFE)的设计与实现,以及将其应用于ShuffleNet V2神经网络模型的方法。LFE模块包括通道注意力机制和空间注意力机制,通过这两个机制计算出的注意力图来增强输入特征图。具体来说,通道注意力机制通过全局平均池化、两个卷积层和Sigmoid激活函数来生成通道权重;空间注意力机制则通过一个卷积层和Sigmoid激活函数生成空间权重。接着定义了`add_lfe_to_stage`函数,用于将LFE模块插入到指定阶段的每个子模块之后。最后,`create_model`函数创建了一个带有LFE模块的ShuffleNet V2模型,并修改了最后一层全连接层的输出类别数。; 适合人群:对深度学习有一定了解,特别是熟悉PyTorch框架和卷积神经网络的开发者或研究人员。; 使用场景及目标:①理解注意力机制在卷积神经网络中的应用;②掌握如何自定义并集成新的模块到现有网络架构中;③学习如何调整预训练模型以适应特定任务需求。; 阅读建议:读者应具备基本的Python编程能力和PyTorch使用经验,在阅读时可以尝试运行代码片段,结合官方文档深入理解各个组件的作用和参数设置。
1
图形处理中的局部特征提取。利用的是MATLAB
2023-04-04 18:10:54 1KB 角点提取
1
基于多核学习的GIST全局和SIFT局部特征融合遥感图像检索方法.pdf
2023-02-23 20:23:52 3.81MB 基于多核学习的GIST全局和SI
1
提出了一种基于局部特征描述的多模态视网膜图像配准方法,该方法采用圆环结构划分关键点周围区域,通过局部梯度方向直方图构造特征描述子,并对所提取的特征向量进行规范化。实验证明,该算法在多模态视网膜数据集上提高了配准的成功率,相比于经典算法提高了算法的速度和鲁棒性。
1
提出了一种基于局部特征分析的多聚焦图像融合方法。首先采用二维经验模式分解(BEMD)对不同聚焦图像进行分解,得到多个内蕴模函数(IMF)分量,然后提取出第一个IMF分量的统计信息作为图像融合的依据,对多张不同聚焦的图像进行融合,得到最终的融合图像。实验结果表明,本文提出的均值IMF方案与其他方案相比,具有较高的融合质量和较低的计算复杂度。
2022-12-12 13:48:02 312KB 软件
1
基于局部特征和二维 PDF 修正的图像增强算法
2022-09-07 14:07:01 478KB
1
基于局部特征和二维 PDF 修正的图像增强算法
2022-09-07 14:07:00 443KB
1

在采用图像谱残差分析方法获取全局特征显著性图像的基础上, 利用小波变换在时域和频域具有的局部特征信息表征能力, 通过对图像包含的不同特征信息进行小波变换, 去除各个特征图中的冗余信息, 得到图像局部特征显著部分, 对两种分析方法下获得的显著图进行融合分析, 获得最终的图像显著部分, 并利用视觉转移机制在原图中勾画出显著性目标. 实验结果分析表明, 改进后的方法提高了图像显著目标检测的准确率.

1
一种多模式融合韦伯局部特征的人脸识别方法.zip
随着信息技术的发展,人们获取图像的种类和数量急剧增加,让计算机自动 完成图像的分析和理解成为一项重要并且紧迫的任务。其中,图像特征的提取与表达,作为图像分析和理解的第一步,是解决图像匹配、分类和检索等诸多视觉任务的基础和关键步骤。由于局部特征对于背景干扰、物体遮挡和成像视角等具有一定的鲁棒性,并且提供了一种具有统计意义的图像内容表示, 研究局部特征具有重要意义。
2022-03-24 13:29:29 9.31MB 博士论文
1