内容概要:本文详细介绍了惯性导航系统的实现技术和常见问题解决方案。首先讨论了粗对准和精对准算法,分别展示了基于加速度计和磁力计的粗对准Python代码以及Kalman滤波用于精对准的状态方程。接着深入探讨了姿态解算中的四元数法及其更新方法,强调了归一化操作的重要性。文中还涉及了动态仿真的划桨误差补偿、温度补偿、安装误差补偿等关键技术,并提供了具体的代码实现。此外,文章讨论了Kalman滤波的应用,特别是在组合导航中的参数选择和调优技巧。最后,作者分享了一些实际工程项目中的经验和教训,如高斯噪声仿真、艾伦方差分析和自适应滤波等。 适合人群:从事惯性导航系统研究和开发的技术人员,尤其是有一定编程基础并希望深入了解惯性导航算法实现的人群。 使用场景及目标:适用于惯性导航系统的设计、开发和优化过程中,帮助开发者理解和解决常见的技术难题,提高系统的精度和可靠性。 其他说明:本文不仅提供理论知识,还附带了大量的代码片段和实践经验,有助于读者更好地掌握惯性导航的实际应用。
2025-11-24 16:02:38 205KB
1
内容概要:本文详细介绍了惯性导航与组合导航系统中的关键算法和技术手段。首先阐述了惯性导航系统的基本概念及其重要性,接着深入探讨了姿态解算、粗对准与精对准等惯性导航算法的具体实现方式。随后,文章重点讲解了组合导航算法中的Kalman滤波技术,以及如何通过融合多种传感器数据提升导航精度。此外,还讨论了IMU数据仿真、划桨误差补偿、速度与位置解算等关键技术,并分别介绍了静态仿真、动态仿真和真实数据解算的不同应用场景及其目的。最后,文章展望了惯性导航和组合导航技术在未来的发展前景。 适合人群:从事导航技术研发的专业人士、研究人员及高校相关专业师生。 使用场景及目标:适用于希望深入了解惯性导航与组合导航系统的工作原理、算法实现及优化方法的人群。目标是帮助读者掌握惯性导航和组合导航的关键技术,提升导航系统的精度和可靠性。 阅读建议:由于涉及较多数学公式和专业技术术语,建议读者具备一定的数学基础和相关领域的背景知识,在阅读过程中结合实例进行理解和思考。
2025-11-24 15:45:41 207KB
1
本书系统探讨了移动机器人的认知模型与导航技术,融合控制论、感知循环与机器学习方法。通过实际实验与仿真,详细讲解了机器人在动态环境中的地图构建、路径规划及实时导航。内容涵盖遗传算法、卡尔曼滤波、立体视觉与多传感器融合,适用于机器人学、人工智能及相关领域的研究与应用。配套源码便于实践,适合高年级本科生与研究生学习参考。 本书详细探讨了移动机器人在动态环境中进行地图构建、路径规划和实时导航所必需的认知模型与导航技术。主要内容包括了融合控制论、感知循环以及机器学习方法,以期达到机器人对环境的认知理解,并以此为基础实施导航。为了更好地理解这些理论和方法,书中提供了大量实际实验和仿真案例分析。通过对这些案例的学习和实践,读者可以对移动机器人在复杂环境中的行为有更为直观和深入的认识。 内容方面,本书重点介绍了遗传算法在机器人路径规划中的应用,卡尔曼滤波在状态估计中的重要性,以及立体视觉和多传感器融合技术在环境感知中的作用。遗传算法是一种模拟自然选择过程的优化算法,被广泛用于解决各种路径规划问题,使机器人能够找到从起点到终点的最优或近似最优路径。卡尔曼滤波则是一种基于状态空间的递归滤波器,用于估计动态系统在有噪声干扰下的状态,对于机器人的定位和导航来说至关重要。 立体视觉技术使机器人能够通过立体摄像机捕捉到的图像来获取周围环境的深度信息,从而进行有效的三维建模。而多传感器融合技术则是将来自不同传感器的数据进行有效整合,提高机器人对环境信息的感知能力。这些技术的结合和应用,为机器人提供了在复杂和未知环境中导航的能力。 本书不仅理论与实际应用相结合,还特别提供了配套的源代码,方便读者进行实践操作,加深对移动机器人认知与导航技术的理解。源代码的存在,为那些希望在学习过程中通过实际编码练习来掌握知识的学生和研究者提供了极大的便利。本书内容的深度和广度,以及实际操作的结合,使得它成为机器人学、人工智能及相关领域的研究和应用的宝贵参考资源。 对于那些对机器人技术有深入研究兴趣的高年级本科生和研究生来说,这本书将是一个极好的学习资料。它不仅涵盖了当前机器人导航领域的基础知识,还介绍了前沿的技术和方法。通过学习这本书,读者可以对机器人的认知模型与导航技术有一个全面的认识,并能够将所学知识应用于解决实际问题中。 本书的编辑团队由多位在认知技术和机器人领域具有深厚学术背景的专家学者组成。他们的贡献不仅限于对本书内容的编纂,还包括了对机器人学、人工智能以及其他相关领域的研究提供了有力的理论支持和技术指导。这保证了书籍内容的权威性和实用性。 通过对这本书的学习和研究,读者能够掌握机器人在复杂环境中的认知与导航技术,理解移动机器人如何通过感知周围环境来构建地图,规划路径,并实现实时导航。这些能力对于机器人自主导航系统的设计与开发至关重要,是实现机器人在实际应用中自主作业的基础。
2025-09-27 15:30:08 11.39MB 机器人 认知技术 导航算法
1
内容概要:本文针对无人系统的智能室内视觉语言导航算法进行了深入研究,提出了基于余弦相似和波束搜索两种算法模型,通过改进视觉语言导航(VLN)中的特征匹配和评估策略,显著提高了导航算法在未知环境中的导航准确率和泛化能力。实验表明,这两种改进的 VLN 模型不仅在国际公开数据集 Room-to-Room 上表现优异,还在多项指标上超过现有模型。 适合人群:电子与通信工程领域的研究人员、高校师生、从事机器人导航和多模态融合技术的专业人士。 使用场景及目标:适用于需要研究或开发基于视觉和语言融合的导航算法的企业和机构,目标是提高机器人在复杂室内环境中的导航准确率和鲁棒性。 其他说明:本文提供的研究成果可以推广应用到智能家居、智慧物流、自动驾驶等领域,对于推动人工智能与机器人技术的融合发展具有重要意义。
1
二维激光slam导航算法move_base改进版本 通过在move_base_params.yaml中配置参数可实现移动机器人的二次调整,解决机器人定位精度设置太高而影响到达目标点的概率底的问题。 pid_kp: 0.5 pid_kd: 0.5 pid_ki: 0.1 #超时时间 pid_time_out: 200 #目标位置精度,不依靠导航调整,自动通过pid调整 pid_xy_goal_tolerance: 0.005 #目标角度精度,不依靠导航调整,自动通过pid调整 pid_yaw_goal_tolerance: 0.005 #目标位置精度容忍值 pid_tolerate_xy_goal_tolerance: 0.01 #目标角度精度容忍值 pid_tolerate_yaw_goal_tolerance: 0.01 #大于30cm时不能调整,误差太大 pid_distance_threshold: 0.3 pid_isStartPid: true #是否是全向底盘 isOmni: false 视频地址:https://b23.tv/JYhZ8ig
2024-06-21 17:17:35 45KB
1
C语言编写的惯性导航和卫星导航的组合导航算法程序,可以实现纯惯性导航解算,组合导航解算,设有传统Kalman滤波、自适应和抗差Kalman滤波,能够进行初始对准,包括间接粗对准和Kalman滤波精对准,可以计算出惯导所处载体的姿态角、速度,位置等信息;数据设置格式和软件使用方式见安装包的说明;算法说明会在后续加入;源代码在Resource文件夹中
2024-06-14 10:21:00 625KB
空间攻防中,拦截卫星相对目标卫星导航参数的确定,对拦截卫星的拦截轨道设计十分重要-本文针对目标卫星轨道为椭圆轨道且拦截卫星存在机动的情况,研究了拦截卫星的相对导航算法.首先,推导了目标卫星轨道为椭圆轨道时拦截卫星的相对运动方程,并根据星间测量几何关系推导了测量方程;其次,通过引入拦截卫星的机动加速度并考虑其控制误差,设计了改进的扩展卡尔曼滤波器,以提高拦截卫星的相对导航精度;最后,通过仿真验证了算法的有效性,并获得了较好的相对导航精度.
2023-11-03 19:24:26 325KB 自然科学 论文
1
ardupilot中的L1导航算法所参考的文章,是英文原版的,下载的时候请注意,里面介绍了L1的原理
2023-03-07 11:23:33 580KB 无人机 ardupilot L1
1
1、卫星信号非常微弱,极易受到干扰,但卫星导航提供的位置误差不随时间累积,卫导系统与惯导系统之间具有很好的互补性,通过惯性/卫星组合导航可以充分发挥两种系统的优点。 2、此算法属于低精度组合导航算法,适合初学者用来学习知识。 3、 算法未考虑空间杆臂误差和时间不同步误差!!!! 4、 算法采用松耦合的结构,GPS与INS均独立工作并各自提供导航参数的结果。为了提高导航精度,通常将GPS的位置与速度输入到滤波器中,同时,INS的位置、速度、姿态也作为滤波器的输入,滤波器通过比较二者的差值,建立误差模型以估计INS的误差。利用这些误差对惯导结果进行修正,得到速度、位置、姿态的组合导航结果。 松耦合的组合结构易于实现,并且比较稳定。当它为开环时,可以提供三个独立的导航结果(原始INS、原始GPS和组合结果),当它为闭环时可以提供两个独立的导航结果(原始GPS、组合结果)。 一个主要的缺点,当卫星数量低于最低数量时,GPS会暂时失效。并且GPS KF的输出是时间相关的,那么KF对于测量噪声不相关的假设就会受到影响,从而影响系统性能。
2023-02-16 20:50:49 6.49MB 组合导航
1
非常好的惯导类学习材料,以捷联惯性/星光组合导航应用为研究主题,针对高空域长航时远程飞机和往返式近地轨道飞行器两种应用对象展开研究,分别设计了基于小视场星体跟踪器的机载惯性/星光组合导航方案和基于大视场星光敏感器的近地惯性/星光/卫星组合导航方案。
2022-11-29 11:28:46 4.21MB 航空航天 导航算法 组合导航
1