视频课程下载——深度学习-3D点云实战系列课程,附源码
2024-11-11 20:33:27 195B 深度学习 课程资源
1
千里马android framework学习资料下载 车载车机系统开发,android 系统源码 aosp 11/12/13/ wms学习,android系统闪黑问题解决 车载多屏互动实战项目经验 surfaceflinger图层实战应用 input全局触摸实战 冻屏触摸问题分析实战 深入理解framework重点模块wms 胜任wms相关的需求开发 掌握系统闪黑,冻屏疑难问题解决 成为业界wms/ams模块专家打下基础
2024-09-25 22:52:21 3.73MB android 课程资源 framework
1
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径。 随着统计学的发展,统计学习在机器学习中占据了重要地位,支持向量机(SVM)、决策树和随机森林等算法的提出和发展,使得机器学习能够更好地处理分类、回归和聚类等任务。进入21世纪,深度学习成为机器学习领域的重要突破,采用多层神经网络模型,通过大量数据和强大的计算能力来训练模型,在计算机视觉、自然语言处理和语音识别等领域取得了显著的成果。 机器学习算法在各个领域都有广泛的应用,包括医疗保健、金融、零售和电子商务、智能交通、生产制造等。例如,在医疗领域,机器学习技术可以帮助医生识别医疗影像,辅助诊断疾病,预测病情发展趋势,并为患者提供个性化的治疗方案。在金融领域,机器学习模型可以分析金融数据,识别潜在风险,预测股票市场的走势等。 未来,随着传感器技术和计算能力的提升,机器学习将在自动驾驶、智能家居等领域发挥更大的作用。同时,随着物联网技术的普及,机器学习将助力智能家居设备实现更加智能化和个性化的功能。在工业制造领域,机器学习也将实现广泛应用,如智能制造、工艺优化和质量控制等。 总之,机器学习是一门具有广阔应用前景和深远影响的学科,它将持续推动人工智能技术的发展,为人类社会的进步做出重要贡献。
2024-06-27 10:12:39 11.47MB 机器学习
1
针对某一具体问题(例如,可以来源于当前时事和大学学习、生活、竞赛等紧密相关的topic(如天气、生态环境、各类竞赛等)),采用机器学习算法实现其分类、识别、预测等。 如:基于SVM的图像分类或回归,通过特征参数提取,训练得到SVM模型,再利用该模型对图像进行分类;或用深度学习模型来自动提取特征+预测等等。 1. 题目(选个有意思、吸引眼球、言简意赅的题目很重要); 2. 中英文摘要和关键词; 3. 背景(问题描述,应用意义,研究现状,存在挑战,解决方案等); 4. 原理方法(对所用的机器学习算法进行原理介绍,图,文,公式,重点是模型的输入输出参数); 5. 解决方案(对所解决问题的方案进行详细描述,重点解决方案中的模型,图,文,公式,模型参数训练,特征提取,学习算法等); 6. 实验结果分析(给出所实现的结果,图文描述(含该模型的过拟合分析),若有对比结果可加分); 7. 结论(描述本文所解决的问题,与传统方法的优势,还存在哪些待解决的问题);
2024-06-26 13:39:29 24.86MB 机器学习 聚类 课程设计 预测模型
1
包含Informer时间序列预测模型的论文源码和组会报告ppt Informer模型的主要特点包括: 多尺度时间编码器和解码器:Informer模型采用了一种多尺度时间编码器和解码器的结构,可以同时考虑不同时间尺度上的信息。 自适应长度的注意力机制:Informer模型采用了一种自适应长度的注意力机制,可以根据序列长度自动调整注意力范围,从而很好地处理长序列。 门控卷积单元:Informer模型采用了一种新的门控卷积单元,可以减少模型中的参数数量和计算量,同时提高模型的泛化能力。 缺失值处理:Informer模型可以很好地处理序列中的缺失值,使用了一种新的掩码机制,可以在训练过程中自动处理缺失值。 Informer模型已经在多个时间序列预测任务中取得了很好的效果,包括电力负荷预测、交通流量预测、股票价格预测等。 ———————————————— 版权声明:本文为CSDN博主「超级码猴k」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_48108092/article/details/129
2024-04-26 15:34:05 2.79MB 深度学习 课程资源 时间序列预测
1
日月光华老师 PyTorch深度学习简明教程 课件csv+代码
2024-03-28 22:31:28 156KB pytorch pytorch 深度学习 课程资源
1
2022_吴恩达机器学习课程(原始讲义)高清完整版PPTpdf 包含对应课程所有PPT 仅供大家学习使用,请勿用作商业目的
2024-02-26 21:09:10 53.21MB 机器学习 课程资源
1
该课件为中科院一位仁兄在学习斯坦福大学吴恩达机器学习课程时候所做的学习笔记,非常好,吴老师上课略过的一些内容笔记都详细给出,并且还做了适当补充。强烈推荐。
2023-12-31 20:58:02 14.16MB 机器学习
1
python机器学习教程_从零开始掌握Python机器学习:⼗四步 教程 Python 可以说是现在最流⾏的机器学习语⾔,⽽且你也能在⽹上找到⼤量的资源。你现在也在考虑从 Python ⼊门机器学习吗?本教程或 许能帮你成功上⼿,从 0 到 1 掌握 Python 机器学习,⾄于后⾯再从 1 到 100 变成机器学习专家,就要看你⾃⼰的努⼒了。本教程原⽂ 分为两个部分,机器之⼼在本⽂中将其进⾏了整合,原⽂可参阅:7 Steps to Mastering Machine Learning With Python 和 7 More Steps to Mastering Machine Learning With Python。本教程的作者为 KDnuggets 副主编兼数据科学家 Matthew Mayo。 「开始」往往是最难的,尤其是当选择太多的时候,⼀个⼈往往很难下定决定做出选择。本教程的⽬的是帮助⼏乎没有 Python 机器学习背 景的新⼿成长为知识渊博的实践者,⽽且这个过程中仅需要使⽤免费的材料和资源即可。这个⼤纲的主要⽬标是带你了解那些数量繁多的可 ⽤资源。毫⽆疑问,资源确实有很
2023-12-27 19:36:00 261KB python 机器学习 课程资源 文档资料
1
【完整课程列表】 完整版 南京邮电大学 机器学习课程教程PPT课件 1-1.机器学习简介-上课版part1(共31页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 1-2 机器学习简介-上课版part2(共55页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 2. 概念学习 分类(共27页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 3 决策树(共44页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 4-1 贝叶斯学习(共18页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 5. 神经网络(共42页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 6 支持向量机(共29页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 7. 基于实例的学习-k近邻(共17页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 8-1 模式选择和评估(共30页).pdf 完整版 南京邮电大学 机器学习课程教程PPT课件 8-2 模式选择和评估(共14页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 9. 计算学习理论(共26页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 10 聚类分析(共74页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 12 特征选择(共36页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 13 Sparse-SDM10(共133页).pdf 完整版 南京邮电大学 机器学习课程教程PPT课件 14 机器学习总结(共25页).ppt 完整版 南京邮电大学 机器学习课程教程PPT课件 15 Overview of ensemble(共31页).ppt
2023-11-02 10:05:25 18.97MB 机器学习 贝叶斯 神经网络