Matlab R2019a与Carsim 2019.1五次多项式换道轨迹规划与MPC跟踪控制模型解读,五次多项式道轨迹规划+MPC轨迹跟踪控制simulink模型(有说明文档) 版本:Matlab R2019a Carsim2019.1 模型采用五次多项式道轨迹,考虑道过程中的边界条件约束和侧向加速度约束,可以满足不同侧向加速度下的道轨迹规划 采用MPC模型预测控制对道轨迹进行跟随,经验证轨迹跟踪效果良好 ,核心关键词:五次多项式换道轨迹规划; MPC轨迹跟踪控制; Simulink模型; 边界条件约束; 侧向加速度约束; 轨迹跟踪效果。,"Matlab R2019a下五次多项式换道轨迹规划与MPC跟踪控制的Simulink模型研究"
2026-01-30 10:19:21 216KB 哈希算法
1
自动驾驶领域的Lattice规划算法,涵盖三个主要部分:参考线的确定、Frenet标架的建立和多项式拟合算法。首先,通过高精地图提供的道路中心线数据确定参考线;其次,利用Frenet标架描述车辆与参考线的关系,涉及切线、法线和副法线向量的计算;最后,采用多项式拟合方法对参考线进行拟合,确保路径的安全性和高效性。文中还提供了Matlab和C++两种编程语言的具体代码实现指导。 适合人群:对自动驾驶技术感兴趣的初学者,尤其是希望深入了解路径规划算法的研究人员和技术爱好者。 使用场景及目标:适用于希望掌握自动驾驶路径规划基础知识的学习者,旨在帮助他们理解并实现Lattice规划的核心概念和技术细节。 其他说明:建议读者结合实际项目或实验平台进行练习,以便更好地掌握所学内容。同时,鼓励进一步查阅相关文献资料,深化对Lattice规划的理解。
2026-01-25 17:07:52 1.92MB
1
在IT行业中,MATLAB是一种广泛使用的高级编程语言和计算环境,尤其在工程、科学和数学领域。本主题聚焦于“RST控制器”的实现,这是一种控制理论中的概念,它与MATLAB的开发紧密相关。RST控制器,全称为Resonant Second-Order Type (谐振型二阶)控制器,是用于系统控制的一种方法,特别是在需要精确控制频率响应的实时应用中,如航空航天、电力系统和自动化设备等。 RST控制器的设计目标是通过调整系统的谐振特性来改善其性能。它由三个关键组成部分组成:比例(P)、积分(I)和微分(D)项。然而,RST控制器的特殊之处在于它引入了谐振元素,这使得控制器能够对特定频率的输入有更敏感的响应,从而优化系统性能。 在MATLAB环境中实现RST控制器,开发者通常会利用控制系统工具箱中的函数。这些函数可以用来设计、分析和仿真各种类型的控制器,包括RST控制器。例如,`c2d`函数可以用于将连续时间控制器转换为离散时间形式,这对于实时应用至关重要。同时,`pid`函数则可用于创建基本的PID控制器,而RST控制器可以视为PID控制器的扩展。 在描述中提到的“法语学校的RST总控制器”可能是指一个教学资源,它可能包含了一系列用法语编写的MATLAB代码示例和教程,用于教授如何设计和应用RST控制器。这类资源对于初学者来说非常宝贵,因为它能帮助他们理解复杂的控制理论并将其应用于实际问题。 至于压缩包文件“ITERATED.zip”,根据名字推测,它可能包含了一个迭代过程或者多次尝试的MATLAB代码集合,用于优化RST控制器的参数。在控制系统的开发过程中,迭代是常见的,因为需要通过反复试验来找到最佳的控制器参数,以达到期望的系统性能。 在实际应用中,MATLAB不仅用于控制器的设计,还用于系统模型的建立、仿真以及控制器的硬件在环测试。MATLAB的Simulink环境允许用户以图形化的方式构建和模拟动态系统,包括RST控制器及其所控制的系统。通过这种方式,开发者可以直观地看到系统响应,调整控制器参数,并在实际部署之前确保其性能满足要求。 RST控制器是控制工程中一种强大的工具,尤其是在需要精确频率响应的实时应用中。MATLAB作为其开发平台,提供了丰富的功能和工具,使得设计和实现这样的控制器变得更为便捷。通过学习和实践,无论是学生还是专业工程师,都能掌握这一技术,提升其在控制系统设计领域的技能。
2026-01-16 14:51:39 2KB matlab
1
在现代科学技术与工程领域,计算机仿真技术发挥着越来越重要的作用。特别是在概率性分析和不确定性量化方面,多项式混沌展开(Polynomial Chaos Expansion, PCE)作为一种高效的统计方法,被广泛应用于模型的不确定度传播、风险分析以及优化设计中。Matlab作为一种高性能的数学计算软件,因其强大的数值计算能力和简便的编程环境,在科研和工程领域得到了广泛的应用。 多项式混沌展开是一种基于随机变量展开的理论,它通过将随机过程或者函数表示为一组正交多项式的线性组合,以此来近似随机输出变量的概率密度函数。这种方法能够在理论上保证对于任意分布的输入变量,都能够得到精确的输出统计特性。其核心在于选取合适的基函数集和进行适当的系数计算,通过最小化误差来提高模拟的精度。 Matlab代码库aPCE-master提供了实现任意多项式混沌展开的工具和算法,这些代码被设计为灵活且高效,允许用户通过简单配置就能针对具体问题进行模拟。Matlab代码的模块化设计使得用户可以方便地对算法进行修改和扩展,以适应复杂度更高的问题。此外,该代码库还包含了对不确定度分析的工具,可以用于估计模型输出的统计特性,如均值、方差、概率密度函数和累积分布函数等。 在使用aPCE-master进行计算时,用户首先需要定义模型的输入参数,包括输入变量的概率分布类型以及分布参数。随后,用户需要选择合适的正交多项式基函数,这通常依赖于输入变量的概率分布类型。在完成了模型设置后,Matlab将通过构建线性方程组并求解得到多项式系数,完成混沌展开过程。 该代码库的实现包含了多项式混沌展开的核心步骤,如采样策略的制定、正交多项式的计算、系数估计、以及模型评估等。为了提高计算效率和精度,Matlab代码还可能实现了多种采样方法,例如蒙特卡洛模拟、拉丁超立方采样、谱采样等。用户可以根据模型的特性和计算资源来选择合适的采样方法。 Matlab代码库aPCE-master的另外一个特点是其可视化功能。在得到模型的统计特性后,用户可以通过内置的绘图函数直观地展示结果。例如,可以绘制输出变量的概率密度函数图、累积分布函数图,以及与其他方法得到的结果进行对比分析。这不仅有助于理解模型的不确定度特性,还可以帮助进行决策分析。 总体来说,aPCE-master是一个功能完备、灵活高效的Matlab代码库,它使得研究者和工程师能够快速实现多项式混沌展开方法,进行复杂系统的不确定度分析和模型验证,从而在减少成本的同时提高研究和开发的效率和可靠性。
2025-11-27 16:38:42 3.46MB
1
% 假设 f(t) 是区间 [0,2pi] 上的实数 2pi 周期函数% 并且 1*n 向量 x 是函数 f(t) 在 n 处的值% 等距点(n 必须是偶数) % t_j=(j-1)*2*pi/n, j=1,2,...,n。 % 功能% [y , yp , ypp] = trigintpoly (x,s) % 使用 fft 找到三角插值多项式% 在 n 个点 t_1,t_2,...,t_n 处对函数 f(t) 进行插值。 那么% 函数 trigintpoly 计算函数 f(t)、f'(t)、 % 和 f''(t) 在点 s(s 是一个 m*1 的点向量),即% y = f(s), yp=f'(s), ypp=f''(s) % % %示例1: % n = 100; % t = 0:2*pi/n:2*pi-2*pi/n; % x = cos(2.*t).^3; % s = [-pi/4,0,p
2025-11-23 13:26:44 2KB matlab
1
18 matlab六自由度机械臂关节空间轨迹规划算法 3次多项式,5次多项式插值法,353多项式,可以运用到机械臂上运动,并绘制出关节角度,关节速度,关节加速度随时间变化的曲线 可带入自己的机械臂模型绘制末端轨迹图 ,关键词: 18-Matlab; 六自由度机械臂; 关节空间轨迹规划算法; 3次多项式; 5次多项式插值法; 353多项式; 关节角度变化曲线; 关节速度变化曲线; 关节加速度变化曲线; 机械臂模型; 末端轨迹图。,MATLAB多项式插值算法在六自由度机械臂关节空间轨迹规划中的应用
2025-11-18 18:15:51 1.43MB istio
1
内容概要:本文探讨了MATLAB环境下六自由度机械臂的关节空间轨迹规划算法,重点介绍了3次多项式、5次多项式插值法及353多项式的应用。通过这些方法,可以精确控制机械臂的运动,绘制出关节角度、速度和加速度随时间变化的曲线,以及末端轨迹图。文中详细解释了不同多项式插值法的特点和应用场景,强调了它们在提高机械臂运动精度和效率方面的作用。 适合人群:从事机器人技术研究、机械臂控制系统开发的研究人员和技术人员,尤其是对MATLAB有一定基础的读者。 使用场景及目标:① 使用3次多项式插值法进行简单但有效的轨迹规划;② 利用5次多项式插值法实现更平滑的运动控制;③ 运用353多项式进行高精度的轨迹规划并绘制末端轨迹图。 其他说明:本文不仅提供理论知识,还展示了实际操作步骤,帮助读者更好地理解和应用这些算法。
2025-11-18 17:24:45 2.04MB MATLAB 六自由度机械臂
1
内容概要:本文介绍了Zernike多项式在不同形状瞳孔(如圆形、六边形、椭圆形、矩形和环形)上的应用,并提供了基于Matlab的代码实现方法。通过该代码,用户可以生成对应瞳孔形状的Zernike正交多项式基函数,用于波前像差分析、光学系统建模与仿真等任务。文章强调了Zernike多项式在光学成像、自适应光学及视觉科学等领域的重要作用,并展示了如何针对非标准瞳孔形状进行正交基构造与数值计算。; 适合人群:从事光学工程、生物医学工程、视觉科学或相关领域研究,具备一定Matlab编程基础的科研人员与高年级本科生、研究生;; 使用场景及目标:①实现不同类型瞳孔下的Zernike多项式展开与波前表示;②用于像差评估、光学系统性能分析及像质优化;③支持自定义瞳孔形状的正交基构建与仿真验证; 阅读建议:建议结合Matlab代码实践操作,理解Zernike多项式的数学构造过程,重点关注不同瞳孔边界条件下的正交性处理方法,并可扩展应用于实际光学测量与图像矫正中。
2025-10-15 15:06:48 8KB Matlab Zernike多项式
1
"整数矩阵和多项式矩阵求逆的复杂性" 整数矩阵和多项式矩阵求逆的复杂性是计算机科学和数学领域中的一个重要问题。在这篇论文中,作者介绍了一种新型的Las Vegas概率算法来计算非奇异整数矩阵的精确逆矩阵,该算法的期望运行时间为O(n^3(log A + log κ(A))),其中A是输入矩阵,κ(A)是矩阵的条件数。同时,作者也将这个算法扩展到多项式矩阵的情况,并证明了该算法的正确性和效率。 在整数矩阵的情况下,作者首先引入了矩阵的条件数κ(A),然后使用Las Vegas概率算法计算矩阵的精确逆矩阵。该算法的期望运行时间为O(n^3(log A + log κ(A))),其中A是输入矩阵,κ(A)是矩阵的条件数。该算法的正确性和效率都是通过严格的数学证明来保证的。 在多项式矩阵的情况下,作者引入了多项式矩阵的概念,并证明了该算法的正确性和效率。作者证明了对于非奇异多项式矩阵,使用该算法可以在O(n^3d)时间内计算出矩阵的精确逆矩阵,其中d是多项式的最高次数。 该论文在整数矩阵和多项式矩阵求逆的复杂性方面取得了重要的进展,提供了一种高效和正确的算法来计算矩阵的精确逆矩阵。 知识点: 1. 整数矩阵的条件数κ(A)是矩阵的重要性质,它决定了矩阵的稳定性和计算的复杂性。 2. Las Vegas概率算法是一种高效的算法,可以用于计算矩阵的精确逆矩阵。 3. 多项式矩阵是矩阵的一种特殊形式,它的元素是多项式函数。 4. 多项式矩阵的求逆是计算机科学和数学领域中的一个重要问题。 5. O(n^3(log A + log κ(A)))是整数矩阵求逆的复杂度估计,其中A是输入矩阵,κ(A)是矩阵的条件数。 6. O(n^3d)是多项式矩阵求逆的复杂度估计,其中d是多项式的最高次数。 7. 在计算矩阵的精确逆矩阵时,需要考虑矩阵的条件数κ(A)和条件数的影响。 该论文在整数矩阵和多项式矩阵求逆的复杂性方面取得了重要的进展,提供了一种高效和正确的算法来计算矩阵的精确逆矩阵。
2025-09-09 16:55:00 663KB 矩阵条件数
1
基于AES主动紧急转向与避障系统的多模型控制算法研究与应用,基于五次多项式PID控制和MPC模型的AES主动转向避障系统介绍,AES-自动紧急转向 AES 主动转向 紧急转向 避障系统 转向避障 五次多项式 PID控制 纯跟踪控制 MPC控制 模型预测 车辆行驶过程中,利用主动转向的方式躲避前方障碍物。 主要利用安全距离进行判断,并利用各种控制算法模型进行车辆转向控制。 所有资料包括: 1、相关问题的文档分析 2、simulink模型和carsim模型(simulink为2021b carsim为2019) 3、可代转simulink版本(文件中有一个转的2018a版本) 4、均包含simulink文件和cpar文件 ,AES主动转向;紧急转向;避障系统;转向避障;五次多项式;PID控制;纯跟踪控制;MPC控制;模型预测;文档分析;simulink模型;carsim模型;可代转simulink版本。,基于主动转向技术的车辆避障系统研究:多算法控制模型预测与仿真分析
2025-09-05 10:30:28 5.05MB kind
1