【ICML2021】基于稀疏标签编码的多维分类
在多维分类中,输出空间中存在多个类变量,每个类变量对应一个异构类空间。由于类空间的异质性,在从MDC示例中学习时,考虑类变量之间的依赖关系非常具有挑战性。本文提出了一种新的多目标预测方法,即SLEM方法,它在编码的标签空间中学习预测模型,而不是在异构的标签空间中学习预测模型。具体来说,SLEM在编码-训练-解码框架中工作。在编码阶段,通过成对分组、一次热转换和稀疏线性编码三种级联操作,将每个类向量映射为实值向量。在训练阶段,在编码标签空间内学习多输出回归模型。在解码阶段,通过对学习的多输出回归模型的输出进行正交匹配追踪,得到预测的类向量。实验结果清楚地验证了SLEM相对于最先进的MDC方法的优越性。
2021-10-08 23:19:35
443KB
多维分类
1