multi-dimensional classification via sparse label encoding.pdf

上传者: 43909715 | 上传时间: 2021-10-08 23:19:35 | 文件大小: 443KB | 文件类型: PDF
【ICML2021】基于稀疏标签编码的多维分类 在多维分类中,输出空间中存在多个类变量,每个类变量对应一个异构类空间。由于类空间的异质性,在从MDC示例中学习时,考虑类变量之间的依赖关系非常具有挑战性。本文提出了一种新的多目标预测方法,即SLEM方法,它在编码的标签空间中学习预测模型,而不是在异构的标签空间中学习预测模型。具体来说,SLEM在编码-训练-解码框架中工作。在编码阶段,通过成对分组、一次热转换和稀疏线性编码三种级联操作,将每个类向量映射为实值向量。在训练阶段,在编码标签空间内学习多输出回归模型。在解码阶段,通过对学习的多输出回归模型的输出进行正交匹配追踪,得到预测的类向量。实验结果清楚地验证了SLEM相对于最先进的MDC方法的优越性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明