图像分割任务中,传统的基于人工设计特征方法工作量大、复杂度高、分割精度较低,现有的基于全卷积神经网络(fully convolutional networks,FCN)的方法在分割边缘上不够精细。为了提高图像分割算法的分割精度,提出基于多源融合的全卷积神级网络模型,输入图片经过Sobel算子提取边缘特征获得特征矩阵,与RGB和灰度图像一起作为输入,将传统全卷积网络拓展成具有多种输入源的分割模型。在PASCAL VOC2012图像分割数据集上进行实验验证,结果显示该模型提高了图像分割的精度,具有良好的实时性和鲁棒性。
1