CNN-GRU多变量回归预测(Matlab) 1.卷积门控循环单元多输入单输出回归预测,或多维数据拟合; 2.运行环境Matlab2020b; 3.多输入单输出,数据回归预测; 4.CNN_GRUNN.m为主文件,data为数据; 使用Matlab编写的CNN-GRU多变量回归预测程序,可用于多维数据拟合和预测。该程序的输入为多个变量,输出为单个变量的回归预测结果。主要文件为CNN_GRUNN.m,其中包含了需要处理的数据。 提取的 1. 卷积门控循环单元(Convolutional Gated Recurrent Unit,CNN-GRU):一种深度学习模型,结合了卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)的特性,用于处理时序数据和多维数据的回归预测或拟合任务。 卷积门控循环单元(CNN-GRU)是深度学习中的一种模型,用于处理具有时序关系或多维结构的数据。相比于传统的循环神经网络(Recurrent Neural Network,RNN),CNN-GRU在处理长期依赖关
2024-09-09 14:11:57 493KB matlab
1
1.Matlab实现TPA-LSTM Attention-LSTM多变量回归预测; 2.运行环境为Matlab2020b; 3.Train为训练集数据,Test为测试集数据,TPAMain.m为主程序,运行即可;其余m文件为子函数,无需运行,所有文件放在一个文件夹; 4.运行需要要GPU支持运算。 1. 使用Matlab实现了TPA-LSTM/Attention-LSTM多变量回归预测的算法。 2. 该算法在Matlab2020b环境下运行。 3. 程序包含了训练集数据(Train)、测试集数据(Test)以及一个主程序(TPAMain.m),只需运行主程序即可。其他的m文件是子函数,无需单独运行,建议将所有文件放在同一个文件夹中。 4. 运行该程序需要GPU支持进行计算。 涉及的 1. TPA-LSTM/Attention-LSTM:这是一种多变量回归预测的算法。TPA-LSTM(Temporal Pattern Attention-LSTM)和Attention-LSTM分别是基于LSTM(长短期记忆)模型的改进版本,用于处理时间序列数据并关注序列中的重要模式和特征。
2023-11-21 20:38:57 309KB matlab lstm
1
基于卷积神经网络-双向长短期记忆网络(CNN-BILSTM)数据回归预测,多变量回归预测模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-11-08 15:22:26 33KB 网络 网络
1
2021江苏省研究生数学建模比赛赛题
2022-07-07 10:03:31 1.72MB 数学建模 多变量回归 多目标优化
1
用于多变量线性回归的测试数据集,关于多变量线性回归的代码在另一篇博客中可见
2021-11-01 18:08:16 657B 多变量回归
1
数学建模:工业润滑油相关资料
1