文件包含一个数据集(csv文件)和一个可执行代码(py文件),是对红酒数据集的分类训练与测试。可作为人工智能、机器学习初学者的学习资料。 模型训练基于逻辑回归算法,数据集和测试集按照8:2的比例进行划分。 数据集前11列为红酒的属性,最后一列是红酒的分类标签,此处红酒总共有六类(标签分别为3、4、5、6、7、8),每一行为一个红酒样本。通过对机器学习分类模型输入特征值,得出此红酒的种类。 需要Python版本3.8及以上;需要引入第三方库pandas和sklearn。
1
运行记录: 训练集每类9k数据集,训练集一般为每类1k; 1.利用英文数据集进行二分类,因为数据可能过于中和,运行正确率在85%左右,其中测试集没有label输出自己评价可以发现测试集正确率和验证集类似,大约85%,epoch为2 2.利用上述影评二分类,label 0 1 对应1 5星影评,正确率在99%+ 3.利用上述影评三分类,label 0 1 2对应1 3 5星影评,正确率在99%左右 4.利用上述影评四分类,label 0 1 2 3对应1 3 4 5星影评,小数据训练,135星各9k训练集,4星10个训练集,输出相同大小,准确率78%左右,也就是说基本预测错误,说明不可以进行小规模训练。 5.利用上述影评五分类,label 0 1 2 3 4对应1 2 3 4 5星影评,正确率97%+
2022-04-20 09:07:02 223.76MB bert 分类 人工智能 深度学习
代码已上传至github https://github.com/danan0755/Bert_Classifier 数据来源cnews,可以通过百度云下载 链接:https://pan.baidu.com/s/1LzTidW_LrdYMokN—Nyag 提取码:zejw   数据格式如下: bert中文预训练模型下载地址: 链接:https://pan.baidu.com/s/14JcQXIBSaWyY7bRWdJW7yg 提取码:mvtl 复制run_classifier.py,命名为run_cnews_cls.py。添加自定义的Processor class MyProcessor(D
2021-09-29 12:54:30 185KB 分类 多分类 多分类任务
1
R语言决策树、随机森林、朴素贝叶斯、支持向量机、KNN、BP神经网络
2021-03-28 19:02:55 8KB R语言 分类算法
1