随着自动驾驶及虚拟现实技术等领域的发展,图像语义分割方法受到越来越多的计算机视觉和机器学习研究人员的关注。首先介绍了图像语义分割领域的常用术语以及需要了解的背景概念,并介绍语义分割问题中几种经典的深度学习算法,如全卷积神经网络(FCN)、Deeplab等。最后针对当前图像语义分割算法的应用,总结展望未来研究方向。
2022-03-12 13:48:14 619KB 图像语义分割
1
本文来自于个人博客,这篇文章讲述卷积神经网络在图像语义分割(semanticimagesegmentation)的应用。图像分割这项计算机视觉任务需要判定一张图片中特定区域的所属类别。更具体地说,图像语义分割的目标是将图像的每个像素所属类别进行标注。因为我们是预测图像中的每个像素,这个任务通常被称为密集预测(denseprediction)。需要注意的一点是我们不对同一类的实例进行分离;我们只关心每个像素的类别。换句话说,如果输入图像中有两个相同类别的对象,则分割图本身并不一定将它们区分为单独的对象。存在另外一类不同的模型,称为实例分割(instancesegmentation)模型,其将分离
1
自An overview of semantic image segmentation,原作者保留版权。
2019-12-21 20:07:45 3.19MB 图像分析
1