1.小波图像分解重构代码matlab 2.nlm算法图像去噪Matlab代码 3.中值滤波图像去噪Matlab代码 4.DNCNN图像去噪Matlab代码 5.BM3D图像去噪Matlab代码 6.均值滤波图像去噪Matlab代码 图像去噪是计算机视觉和图像处理领域中的一个重要研究方向,它旨在从受噪声污染的图像中去除噪声,恢复出清晰的图像信息。在这一领域中,多种算法被开发出来,以应对不同类型和不同强度的噪声干扰。本次分析的文件内容涉及了几种在图像去噪中常用的技术,包括小波变换分解重构、NLM算法、中值滤波、DNCNN以及BM3D。 小波变换是一种信号处理技术,它在图像处理中的应用主要表现为多分辨率分析,可以有效地分析图像中的局部特征,而不会丢失重要信息。小波图像分解重构代码通过小波变换将图像分解到不同尺度,然后进行重构,达到去噪的目的。这种方法对于处理非平稳信号非常有效。 非局部均值(NLM)算法是一种基于图像局部相似性的滤波技术,它认为图像中存在大量的重复模式,并利用这些模式对噪声进行过滤。NLM算法在处理高斯噪声方面表现优异,能够很好地保留图像的边缘信息。 中值滤波是一种典型的非线性滤波器,它通过取图像邻域像素值的中值来替代中心像素,以此来去除孤立的噪声点。中值滤波尤其适用于去除椒盐噪声,同时保持图像的边缘信息。 深度神经网络(DNN)在图像去噪方面也取得了显著的进展。DNCNN(Denoising Convolutional Neural Network)是一种特定设计的深度卷积网络,它通过学习大量噪声图像和其对应的干净图像之间的映射关系,从而达到去除噪声的目的。DNCNN算法在去噪性能和效率上都有很好的表现。 BM3D(Block-Matching and 3D Filtering)是一种基于稀疏表示的高级图像去噪算法。它利用图像块之间的相似性来构建一个三维组,然后对这个组进行变换域的滤波处理。BM3D算法能够处理各种类型的噪声,并且在去噪的同时很好地保持图像细节。 图像去噪技术的发展反映了对图像质量要求的提高,以及对处理速度快、效果好的去噪算法的不断追求。各种算法之间的对比和优化,促进了算法的发展和图像处理技术的进步。 图像去噪的研究不仅对学术界具有重要意义,它也广泛应用于工业、医疗、交通等众多领域。在实际应用中,选择合适的去噪算法对于最终的图像分析和处理结果至关重要。同时,随着深度学习技术的发展,基于深度学习的去噪算法在实际应用中越来越显示出其优越性。 图像去噪技术的优化和创新对于提升计算机视觉和图像处理的质量标准有着不可忽视的作用。不同算法的选择和应用,需要根据实际的噪声类型、图像特性以及处理速度等因素进行综合考量。未来,随着技术的不断进步,我们可以期待图像去噪技术能够实现更加智能化和高效化的处理。
2025-10-21 16:54:15 2.86MB
1
使用贪婪算法mp对图像进行重构 实验效果非常的好
2023-03-28 15:21:48 2KB sparse
1
可以对文件夹目录下的一类文件进行批量重命名,matlab代码,简单易懂好操作
2022-06-18 20:01:00 613B matlab 重命名 图像
1
今天小编就为大家分享一篇python 实现对文件夹中的图像连续重命名方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-04-19 11:41:11 25KB python 图像 重命名
1
一种通用的基于FPGA的视频和图像处理可重构平台
2022-04-06 03:03:42 1.73MB fpga开发 音视频 图像处理 重构
图像快速去重
2022-02-25 09:04:54 5.08MB 图像去重 图像处理 删除重复 相似度
1
图像查重接口_V0.6(2) copy(1).md
2022-02-17 10:34:13 9KB
1
深度学习作为一个新的机器学习方向,被应用到计算机视觉领域上成效显著.为了解决分布式的尺度不变特征转换(Scale-Invariant Feature Transform,SIFT)算法效率低和图像特征提取粗糙问题,提出一种基于深度学习的SIFT图像检索算法.算法思想:在Spark平台上,利用深度卷积神经网络(Convolutional Neural Network,CNN)模型进行SIFT特征抽取,再利用支持向量机(Support Vector Machine,SVM)对图像库进行无监督聚类,然后再利用自适应的图像特征度量来对检索结果进行重排序,以改善用户体验.在Corel图像集上的实验结果显示,与传统SIFT算法相比,基于深度学习的SIFT图像检索算法的查准率和查全率大约提升了30个百分点,检索效率得到了提高,检索结果图像排序也得到了优化.
1
输入灰度图像,输出图像的分形维数,使用分形盒维数算法 参考文献:基于分形维数的图像纹理分析,王耀南 王绍源 毛建旭,湖南大学学报,2006年10月
2021-12-03 17:58:28 2KB 灰度图像
1
<p class="MsoNormal"><span style="font-family:宋体;font-size:9pt;">压缩传感理论将信号的采样与压缩同时进行,利用信号在变换基上可以稀疏表示的先验知识,从比香农采样少的多的观测值中重构原始信号。</span><span style="font-family:宋体;font-size:9pt;">近年来,两步迭代阈值算法作为一种求解反问题的优化方法,因其与多尺度几何分析存在紧密联系,且算法参数少,思想比较简单等特点,已经应用到了压缩重构中。但其使用时域的软硬阈值算子,不能获得很好的图像稀疏表示,从而使得算法重构精度不高。针对上述问题,本文在研究两步迭代阈值算法的基础上,提出了一种自适应的两步迭代阈值算法。该算法利用当前估计值提供的信息自适应估计步长参数,保证了估计值向最优解方向移动,提高了算法的重构精度,且针对其稀疏表示信号能力不足的缺点,运用高斯混合尺度模型对曲波邻域系数进行建模,充分利用曲波变换平移不变性和多方向选择性的优点,增加了图像表示的稀疏度。最后将其应用到图像压缩重构中,实验结果表明,该算法在峰值信噪比和主观视觉上都优于小波域高斯混合尺度模型和曲波硬阈值重构方法。</span></p><!--EndFragment-->
2021-11-25 12:32:45 2.37MB 研究论文
1