为了在红外与可见光图像融合中充分利用中间层提取的信息,防止信息过度丢失,提出一种新的基于卷积自编码器和残差块的图像融合方法。该方法采用由编码器、融合层和解码器三部分组成的网络结构。将残差网络引入编码器中,将红外与可见光图像分别送入编码器后,通过卷积层和残差块来获取图像的特征图;将得到的特征图采用改进的基于L1-norm的相似度融合策略进行融合,并将其整合为一个包含源图像显著特征的特征图;重新设计损失函数,利用解码器对融合后的图像进行重构。实验结果表明,与其他融合方法相比,该方法有效地提取并保留了源图像的深层信息,融合结果在主观和客观评价中都有着一定的优势。
2021-04-08 18:50:11 12.59MB 机器视觉 图像融合 可见光图 红外图像
1
包含了一些配准好的红外与可见光图像,可以用于做图像融合,信息融合等
2019-12-21 20:53:53 1.1MB 红外
1