IC厌氧反应器施工图_环保水利_污水处理工业设计CAD图.dwg
2025-07-19 17:32:13 762KB 污水处理 CAD
1
轻子混合参数的精确测量和中微子质量等级的确定是即将进行的中基线反应堆抗中微子实验(如JUNO和RENO-50)的主要目标。 在这项工作中,我们通过假设 典型的实验装置。 事实证明,如果在最乐观的情况下,NSI参数εeμ或εeτ高达2%,则可以在大于3σ的水平上排除真实的混合参数sin2θ12。 但是,发现NSI效应的发现范围很小,并且严重取决于违反CP的阶段。 最后,我们表明NSI效应可以增强或降低JUNO和RENO-50实验在正常和反向中微子质量层次之间的区分能力。
2025-07-17 22:55:04 476KB Open Access
1
根据对中微子振荡的不同影响,MNSP矩阵中的统一性违规可分为轻度和重度无菌中微子的存在分别引起的直接统一性违规和间接统一性违规。 其中sub-eV无菌中微子最为有趣。 我们研究了在精密反应堆抗中微子振荡实验中,用三个条件寻找亚eV无菌中微子的可能性。
2025-07-17 21:40:00 737KB Open Access
1
预测和观察到的反应堆反中微子通量之间的〜3σ差异(被称为反应堆反中微子异常)继续引起人们的兴趣。 最近在反应堆抗中微子光谱中发现意外突增的迹象,以及不同裂变同位素通量不足的迹象,似乎不利于对无菌中微子振荡的异常解释。 鉴于有关电子(反)中微子消失的所有可用数据,我们严格审查该结论。 我们发现,基于全局数据,无菌中微子假设不能被拒绝,并且与来自不同裂变同位素的中微子通量的单个重新定标相比,它只是轻度的不利。 主要原因是NEOS和DANSS实验的最新数据中存在光谱特征。 如果以表面值对反应堆通量进行最新的预测,则无菌中微子振荡可以对全局数据进行一致的描述,相对于无振荡情况,其重要性接近3σ。 即使反应堆的通量和光谱没有任何拟合,仍然保留了2σ的暗示,以无菌中微子为准,允许的参数区域与关于振荡的异常解释相一致。
2025-07-17 12:32:06 1.13MB Open Access
1
我们报告了使用多个探测器对中基线反应堆中微子实验进行的中微子质量等级(MH)测定,其中通过添加近探测器可以显着提高测量MH的灵敏度。 然后,深入研究了近探测器的基线和目标质量对组合MH灵敏度的影响。 对于目标质量为20 kton且基线为52.5 km的远距离探测器,近探测器的基线和目标质量的最佳选择分别为〜12.5 km和〜4 kton。 作为将来的中型基线反应堆中微子实验的典型示例,针对JUNO和RENO-50的特定配置选择了近探测器的最佳位置和目标质量。 最后,我们讨论了单探测器和双探测器设置中反应堆抗中微子能谱不确定性的不同影响,这表明在存在近探测器的情况下可以很好地限制光谱不确定性。
2025-07-17 08:37:21 1.36MB Open Access
1
反应堆抗中微子的异常可以通过反应堆抗中微子向eV质量的无菌中微子的振荡来解释。 为了探究这一假设,STEREO实验测量了六个不同探测器电池中的抗中微子能谱,该探测器电池中的基线距离ILL研究堆的紧凑堆芯在9至11 m之间。 在这封信中,报告了反应堆开启66天和反应堆关闭138天的结果。 基于脉冲形状鉴别参数的分布,开发了一种提取抗中微子速率的新方法。 通过比较独立于绝对归一化和反应堆光谱预测的细胞比率,可以对无菌中微子进行新的振荡测试。 发现结果与零振荡假说是相容的,并且在97.5%C.L下排除了反应堆抗中微子异常的最佳拟合。
2025-07-16 21:39:34 456KB Open Access
1
为了使用反应堆中微子确定中微子质量层次,必须克服的挑战之一是非振荡反应堆中微子谱的理论不确定性:这是最近有人提出在反应堆中微子光谱附近增加一个探测器的原因之一。 JUNO实验。 将讨论频谱不确定性与模型无关的处理方法,以及对最终结果的影响。 此外,由于中微子的光谱取决于燃料的化学成分,因此近,远探测器的光谱将有所不同,因为它们将接收来自不同堆芯的中微子。 考虑到反应堆堆芯中燃料化学成分的时间演变,可以从近探测器数据重建远探测器光谱。 我们将显示,用于重建频谱的方法可能会影响对质量层次的灵敏度,但是,如果近距离检测器足够大,则差异可以忽略不计。
2025-07-16 19:30:11 369KB Open Access
1
最近发现的反应堆中微子光谱结构中的5-7 MeV过量,对应于4-6 MeV的瞬时能量,表明反应堆中微子光谱的不确定性远大于某些理论估计。 中基线(约50 km)反应堆中微子实验将提供迄今为止最精确的θ12测量值。 但是,由于在2011年重新计算了理论反应堆中微子光谱,因此没有重现这一过量现象。 结果,如果进行中等基线实验尝试使用理论光谱确定sin2⁡(2θ12),则结果将具有系统性的1%的向上偏差,远大于预期的不确定性。 我们表明,通过使用反应堆中微子光谱的最新测量值,在中基线反应堆中微子实验中测量θ12的精度可以显着提高。 我们估计此精度为9 Li散裂背景否决效率和死区时间的函数。
2025-07-16 17:25:04 279KB Open Access
1
comsol仿真 PEM电解槽三维两相流模拟,包括电化学,两相流传质,析氢析氧,化学反应热等多物理场耦合,软件comsol,可分析多孔介质传质,析氢析氧过程对电解槽电流密度分布,氢气体积分数,氧气体积分数,液态水体积分数的影响 在当前能源和环境研究领域,PEM(质子交换膜)电解槽作为一种高效制氢技术,受到了广泛关注。它能够在较低的温度下运行,具备快速的响应速度,非常适合于可再生能源的电力转换和储存。然而,要实现PEM电解槽的高性能和高效率,需要深入理解其复杂的物理化学过程,特别是多相流体动力学、电化学反应和传质过程的交互作用。为此,利用COMSOL仿真软件进行三维模拟分析,成为了科研人员进行理论研究和工程设计的重要工具。 三维模拟不仅能够为电解槽内部的流体流动、温度场分布、电流密度分布提供直观的可视化结果,还能帮助研究人员优化电解槽的设计。例如,在电化学反应过程中,通过模拟可以详细观察到氢气和氧气在电解槽内的生成和析出情况,以及这些气体的体积分数变化。同时,考虑到质子交换膜电解槽的工作过程中,水分解产生的氢气和氧气在多孔介质中的传输,以及它们与膜和电极界面的相互作用,是影响电流效率和寿命的关键因素,通过仿真分析能够深入掌握这些因素对电解槽性能的具体影响。 此外,化学反应热的管理也是电解槽设计中的一个重要方面。在电化学反应过程中产生的热量需要及时有效地去除,以防止过热造成的性能下降甚至设备损坏。通过COMSOL软件进行的多物理场耦合仿真能够帮助研究人员模拟热管理过程,优化电解槽内部的热传递路径,确保反应过程中的温度控制在适宜的范围内。 在文件名称列表中,我们可以看到文档、HTML页面以及图片等多种格式的文件,这表明了PEM电解槽三维两相流模拟研究的全面性和深入性。其中,“仿真电解槽三维两相流模拟.html”很可能是一个技术博客或者论文摘要的HTML文件,而“1.jpg”可能是一张相关的模拟结果图表。而“基于您提供的主题我为您撰写了以下文章标题.txt”和“标题基于的电解槽三维两相流模拟与多物.txt”文件则显示了对文章标题的思考和确立过程,这反映出研究工作从问题提出到结果总结的完整流程。 PEM电解槽的三维两相流模拟是一项涉及电化学、流体力学、热传递以及材料科学等多个学科领域的复杂工程,COMSOL仿真软件为研究者提供了一个强大的平台,使得对这些复杂过程的理解和控制变得更加直观和精确。通过这些模拟,不仅可以发现新的科学知识,也能够指导实际的工程设计,为提高PEM电解槽的性能和降低成本提供科学依据。
2025-07-04 10:01:42 67KB
1
类硅烯[CH(R)N]2SiLiF (R=H和t-Bu)的构型及异构化反应,解菊,冯大诚,用密度泛函理论(DFT)在B3LYP/6-31G(d)计算水平上首次研究了N-杂环类硅烯[CH(R)N]2SiLiF (R=H和t-Bu)的构型及异构化反应。计算得到了[CH(H)N]2SiLiF的�
2025-06-08 19:18:27 896KB 首发论文
1