配电网光伏储能双层优化配置模型(选址定容) 配电网光伏储能双层优化配置模型(选址定容),还可以送matpower 关键词:选址定容 配电网 光伏储能 双层优化 粒子群算法 多目标粒子群算法 kmeans聚类 仿真平台:matlab 参考文档:《含高比例可再生能源配电网灵活资源双层优化配置》 主要内容:该程序主要方法复现《含高比例可再生能源配电网灵活资源双层优化配置》运行-规划联合双层配置模型,上层为光伏、储能选址定容模型,即优化配置,下层考虑弃光和储能出力,即优化调度,模型以IEEE33节点为例,采用粒子群算法求解,下层模型为运行成本和电压偏移量的多目标模型,并采用多目标粒子群算法得到pareto前沿解集,从中选择最佳结果带入到上层模型,最终实现上下层模型的各自求解和整个模型迭代优化。
2025-05-21 10:50:18 267KB
1
内容概要:本文探讨了一种基于MATLAB平台的双层优化电动汽车时空调度策略。针对风电接入电网后面临的时空双重调度挑战,提出了一个创新的双层优化模型。上层输电网络采用fmincon函数进行经济调度,优化火电、风电和电动车充电的成本;下层配电网则利用改进的粒子群算法处理空间维度的负荷分配,确保节点电压稳定和线路损耗最小化。文中详细介绍了目标函数设计、粒子群算法改进、风电不确定性和动态电价机制等方面的技术细节,并通过IEEE33节点系统进行了验证。 适合人群:从事电力系统优化、智能电网研究的专业人士,以及对MATLAB编程和优化算法感兴趣的科研人员。 使用场景及目标:适用于需要解决大规模电动汽车接入电网后引起的调度复杂性问题的研究机构和技术开发者。主要目标是提高电网运行效率,减少弃风现象,优化用户充电体验,降低总体运营成本。 其他说明:文章强调了配电网参数校核的重要性,并指出电动汽车可以成为电网的移动储能单元,在适当条件下能够帮助电网削峰填谷。此外,还讨论了动态电价机制对用户行为的影响,展示了如何通过合理的激励措施引导用户在合适的时间段充电。
2025-04-28 22:00:41 631KB
1
基于KKT条件的双层电力市场竞标模型:从MPEC到MILP的优化简化过程与代码实现,基于KKT条件的双层电力市场竞标模型:简化为MILP模型的MPEC双层优化策略分析代码解析与初探,GAMS代码:基于KKT条件的双层电力市场竞标模型 关键词:双层优化模型,采用KKT条件和强对偶将MPEC模型简化为MILP模型 代码的部分截图及参考文献见下图 此代码有完整的模型和适用于进行电力市场研究的初学者 ,双层优化模型;KKT条件;强对偶;MPEC模型;MILP模型;电力市场竞标模型;初学者,基于KKT条件的双层电力市场竞标模型:MPEC到MILP的简化研究
2025-04-20 22:50:07 3.23MB
1
参考文献:   [1]  刘自发,于普洋,李颉雨.  计及运行特性的配电网分布式电源与广义储能规划    [J].  电力自动化设备,  2023,  43  (03):  72-79.     [2]  任智君,郭红霞,杨苹,等.  含高比例可再生能源配电网灵活资源双层优化配置    [J].  太阳能学报,  2021,  42  (09):  33-38.     [3]  高红均,刘俊勇.  考虑不同类型DG和负荷建模的主动配电网协同规划    [J].  中国电机工程学报,  2016,  36  (18):  4911-4922+5115.           分析系统灵活性供需关系,建立灵活资源运行-规划联合优化双层配置模型。运行层引入灵活性不足率作为系统灵活性评价指标,将网损和弃风弃光量计入经济惩罚,以系统年运行成本最优为目标;规划层引入系统综合安全性指标对系统安全性进行评估,以系统年综合成本最优为目标。采用粒子群优化算法对双层配置模型进行求解。最后,利用IEEE 33节点配网系统对算例进行仿真,结果验证了所提运行-规划联合双层配置模型能有效减少网损和
2024-04-15 18:22:59 3.41MB matlab 粒子群算法
1
双层优化问题(Bilevel Programming Problems),也被称为双层规划,最早由Stackelberg与1934年在经济学相关研究中提出,因此也被称为Stackelberg问题。双层规划问题一般具有层次性、独立性、冲突性、优先性和自主性等特点。 对于小规模线性双层优化问题,通过迭代也无法求出问题的解,实际我们要解决的问题一般都不会这么简单,通常规模比较大,或者模型中存在非线性,一般来说很难通过简单的迭代法进行求解,需要考虑其他方法。实际上,双层优化问题是一个 NP 难问题,通常采用的方式是利用 KKT(Karush-Kuhn-Tucker)条件将双层优化转换为单层优化问题。 本文介绍了双层优化的原理与求解方法,详细介绍了KKT条件在双层优化中的使用方法,并提供了相应的matlab代码供参考学习。
2023-05-26 10:23:49 4.34MB matlab
1
除了数学规划方法之外,还可采用智能优化算法求解双层优化问题,一般在上层优化中采用智能优化算法,下层优化使用数学规划方法;也可以在上下层优化中都采用智能优化算法,这篇博客将进行详细介绍。算例依旧使用上面两篇博客中的线性双层优化问题,由于这个优化问题比较简单,我们采用最基础的粒子群算法进行求解。​ 资源包括三个部分: 1.基础粒子群算法的matlab代码 2.采用粒子群算法求解带约束的优化问题matlab代码 3.采用粒子群算法求解双层优化问题的matlab代码 智能优化算法无法避免的问题,即使是一个非常简单的目标函数,求出的结果也无法保证是全局最优,那么当目标函数变复杂时,情况将会更糟糕。现在对智能优化算法的研究非常多,各种动植物园算法、各种改进都层出不穷,但还是无法从根本上解决算法无法保证全局收敛的问题。         所以,只有在数学模型比较复杂,非线性条件很多,而且对结果的误差是可以接受的情况下,才建议使用智能优化算法进行求解。
2023-05-22 17:23:33 337KB matlab 算法 软件/插件
1
智能优化算法-双层优化算法】基于双层优化算法求解多目标优化文题
2022-12-27 17:07:21 74KB matlab 算法 源码软件 开发语言