形态滤波是一种非线性滤波方式,其基本思想是利用数学形态学的原理对信号进行处理,有效提取信号的边缘轮廓和形状特征。形态滤波技术可以应用于多种领域,尤其是对于非线性时间序列降噪处理有着重要的作用。本文针对非线性时间序列信号,特别是那些与高斯白噪声具有相似宽频带特性的信号,提出了一种基于形态滤波的降噪方法。 在信号处理中,小波变换是一种广泛应用的线性分析工具,它可以有效地处理具有线性特征的信号。然而,对于非线性信号,如混沌信号,传统的线性方法(如小波分析)并不能很好地与噪声分离,因此需要一种新的非线性处理方法。 形态滤波的核心是使用结构元素对信号进行匹配和操作,这些结构元素具有不同的形状、宽度和高度,它们定义了滤波器操作的方式。形态滤波器通过基本运算—腐蚀和膨胀,结合开运算、闭运算、开-闭运算(OC)和闭-开运算(CO),以实现对信号的细化和噪声的去除。结构元素的选取对于形态滤波器的性能有决定性的影响。 开运算主要应用于滤除信号上方的噪声,而闭运算则用于滤除信号下方的噪声尖峰。通过迭代使用开运算和闭运算,可以在多轮操作中逐步消除噪声,实现对信号的精细处理。除此之外,还可以使用平均(AVG)滤波器来进一步平滑信号。 在具体的研究中,作者选取了Lorenz信号作为研究对象,这种信号是一种典型的混沌信号,具有复杂的非线性特征。通过使用不同的结构元素和形态算子,研究者们成功地对Lorenz信号进行了形态滤波处理,并且证明了形态滤波在降低信号噪声的同时,能够有效保留信号的非线性特征。 该研究不仅展示了形态滤波在信号处理中的应用潜力,而且还讨论了如何通过形态滤波后进一步平滑处理以获取更加清晰的非线性特征。通过数值仿真分析,作者验证了该降噪方法的有效性,对形态滤波技术在未来信号处理领域的应用提供了理论基础和技术支持。 形态滤波技术为非线性时间序列信号提供了新的降噪手段,通过数学形态学基本运算和结构元素的灵活使用,可以在去除噪声的同时保留信号的重要特征,从而为非线性时间序列分析开辟了新的道路。
2026-02-20 15:33:48 237KB 首发论文
1
本资源提供小波阈值去噪的完整 Python 实现,支持硬阈值、软阈值和 Garrote 阈值三种去噪策略,可自定义小波基类型、分解层数和阈值计算方式。代码包含噪声标准差估计、边界效应处理等细节,并通过生成含噪正弦波信号测试不同阈值方法的去噪效果。可视化部分将软阈值和 Garrote 阈值结果分开绘制,便于对比分析。适用于振动信号、生物医学信号等领域的噪声去除,可作为信号处理预处理模块直接集成到项目中。
2025-07-03 16:21:41 1KB python 信号处理 小波阈值 小波降噪
1
在散斑去噪过程中保持图像边缘纹理特征,是光学相干层析图像处理技术的难题。散斑去噪过程中的散斑残留和边缘纹理模糊是该难题的主要诱导因素。为解决这一难题,提出一种基于剪切波变换的改进全变分散斑去噪方法。该方法结合剪切波变换和传统全变分模型,对不同图像区域采用针对性的去噪策略,兼顾散斑去噪与纹理保留,提高了光学相干层析图像的噪声抑制效果。对不同生理、病理状态下的视网膜光学相干层析图像进行测试,结果表明:该方法通过采用区域针对性策略改进了噪声抑制能力,通过引入剪切波变换方法提高了边缘纹理保持能力,进而同时实现散斑去除和纹理保留。此外,与其他散斑去噪方法进行对比,验证了该方法的有效性。
2024-09-05 11:01:21 8.53MB 图像处理 散斑去噪 边缘纹理 光学相干
1
针对传统图像去噪方法易使图像模糊和丢失边缘信息等问题,根据煤矿井下视频图像光度不均、噪声较大的特点,提出采用基于改进的简化脉冲耦合神经网络对煤矿井下图像进行去噪处理。对简化的脉冲耦合神经网络模型中神经元连接强度β的选取方法进行改进,使β依赖于图像像素灰度值,从而更加有效地去除椒盐噪声;对动态门限的衰减时间常数αE的选取方法进行改进,使αE依赖阈值输出的放大系数vE,减少整个模型的参数,并通过实验选取vE值。实验结果表明,与传统的中值滤波、均值滤波方法相比,基于改进的简化脉冲耦合神经网络的去噪方法不仅有效去除了矿井图像的椒盐噪声,而且很好地保持了图像的边缘等细节特征。
1
图像在采集、获取和传输过程中往往夹杂着噪声,针对几种常用方法去噪效果不理想,提出了一种新的图像去噪方法。此方法通过二维变分模态分解将图像分解为一系列不同中心频率的子模态,保留其低频模态,并对其进行自适应中值滤波处理,从而得到其去噪后的图像。实验结果表明,与其他几种常用的去噪方法相比,该方法在滤除噪声的同时,能较好地保留图像的边缘细节,图像也获得了较好的视觉效果,此外客观评价参数也得到明显的改善,随着噪声强度加大去噪效果愈明显。
1
C++仿写wavelet分解去噪方法
2023-12-06 09:40:22 22KB
1
基于Matlab的数字图像处理降噪方法.ppt
2023-03-23 19:59:18 1.21MB 基于Matlab的数字图像处理降
1
随着计算机、电子技术的不断发展,红外技术也不断的发展并被广泛地用于各个领域。基于红外图像的红外诊断技术被成功地应用于电力系统的设备状态检测和故障监测,并在发电机故障诊断、变压器过热、阻波器接头缺陷诊断、设备绝缘诊断等方面已取得显著实效
1
提出一种基于非下采样Contourlet变换的径向基神经网络(RBF)自适应阂值去噪方法。在NSCT域通过RBF神经网络使目标误差函数GCV(T)的最小化,从而确定最优阂值,再通过软阂值函数去噪。利用NSCT的平移不变性来抑制伪Gibbs失真,从而能完整地保留图像的纹理和边缘等信息。实验结果表明,该方法可以有效去除高斯噪声,提高图像的峰值信噪比。
2022-10-13 21:39:59 932KB 自然科学 论文
1
近年来基于铁矿近红外光谱数据建模的方法已成为铁矿成分分析的主要方法之一,由于各种因素的影响,数据中存在大量噪声,这对铁矿建模精度影响较大。文中采用平滑算法和傅里叶变换对磁、赤铁矿样本进行去噪处理,研究结果表明:傅里叶变换的去噪效果是两种方法中最好的;平滑算法中磁、赤铁矿分别采用9点线性加权、9点二次加权平滑方法的去噪效果最好。上述结果对磁、赤铁矿近红外光谱数据去噪方法的选择及后续研究具有指导意义。
2022-06-28 08:13:35 707KB 近红外 光谱数据 去噪方法 信噪比
1