一种基于NSCT变换的RBF神经网络自适应阈值去噪方法 (2013年)

上传者: 38512781 | 上传时间: 2022-10-13 21:39:59 | 文件大小: 932KB | 文件类型: PDF
提出一种基于非下采样Contourlet变换的径向基神经网络(RBF)自适应阂值去噪方法。在NSCT域通过RBF神经网络使目标误差函数GCV(T)的最小化,从而确定最优阂值,再通过软阂值函数去噪。利用NSCT的平移不变性来抑制伪Gibbs失真,从而能完整地保留图像的纹理和边缘等信息。实验结果表明,该方法可以有效去除高斯噪声,提高图像的峰值信噪比。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明