动手学深度学习-pytorch-官方V2.pdf
2025-11-21 11:35:16 24.32MB
1
### 动手学深度学习——基础篇 #### 目录概览与背景介绍 《动手学深度学习》是一本旨在帮助读者从理论到实践全面掌握深度学习技术的教材。本书覆盖了深度学习的基础知识、核心算法及实际应用案例。特别地,通过本章节的摘录可以看到,作者们着重于讲解数据操作、数据预处理以及线性代数等基础知识,这些是进行深度学习项目不可或缺的部分。 #### 数据操作 **入门:** - **数组创建:**在深度学习中,我们经常需要处理多维数组(张量)。了解如何在Python中使用`NumPy`或深度学习框架如`PyTorch`和`TensorFlow`创建基本的数组结构至关重要。 - **数据类型:**了解不同数据类型(如整型、浮点型)及其在计算中的意义。 **运算符:** - **算术运算:**加减乘除等基本运算。 - **比较运算:**用于判断两个数组元素之间的关系。 - **逻辑运算:**如与、或、非等,用于复合条件的判断。 **广播机制:** - **定义:**广播机制允许我们在不同形状的数组之间执行算术运算。例如,可以将一个形状为`(1, 2)`的数组与一个形状为`(3, 1)`的数组相加,得到一个形状为`(3, 2)`的结果数组。 - **应用场景:**在深度学习中,广播常被用于权重更新等场景,使得模型训练更加高效。 **索引和切片:** - **索引:**获取特定位置的元素。 - **切片:**选取连续的一段元素,支持多维度的选取方式。 - **高级索引:**使用布尔数组或整数数组进行复杂索引操作。 **节省内存:** - **视图:**不复制原始数据,而是提供对原数据的不同视角,有效减少内存占用。 - **转置:**改变数组的轴序,但不会增加额外内存负担。 **转换为其他Python对象:** - **列表:**将数组转换为Python列表,方便进一步的数据处理。 - **字典:**当数据需要按照键值对形式存储时,可以考虑将特定数组转换成字典。 #### 数据预处理 **读取数据集:** - **文件格式:**常见的数据集格式包括CSV、JSON等,了解如何读取这些格式对于处理实际数据至关重要。 - **库选择:**利用Python库如`pandas`来高效读取和解析数据集。 **处理缺失值:** - **缺失值识别:**使用特定的函数或方法识别数据集中的缺失值。 - **填充策略:**采用插值、均值/中位数填充等方式处理缺失值,避免数据偏差。 **转换为张量格式:** - **定义:**将数据转换为张量格式,便于后续的深度学习模型处理。 - **库支持:**多数深度学习框架(如PyTorch、TensorFlow)提供了内置函数来实现这一转换过程。 #### 线性代数 **标量、向量、矩阵与张量:** - **标量:**单一数值,没有方向。 - **向量:**一组按顺序排列的数值,可以视为具有方向的线段。 - **矩阵:**由行和列组成的二维数组,常用于表示线性变换。 - **张量:**多维数组,可以视为矩阵的推广。 **张量算法的基本性质:** - **张量加法:**与向量、矩阵加法相似,对应位置的元素相加。 - **张量乘法:**包括点积、外积等多种形式。 - **转置:**交换张量的维度,对于多维张量来说尤为重要。 **降维:** - **定义:**减少数据的维度,以便更容易地进行可视化或简化计算。 - **常用方法:**主成分分析(PCA)、奇异值分解(SVD)等。 **点积(Dot Product):** - **定义:**两个向量的对应元素乘积之和。 - **应用场景:**计算向量之间的夹角余弦值,评估向量相似度。 **矩阵-向量积:** - **定义:**矩阵的每一行与向量对应元素相乘再求和。 - **应用场景:**在神经网络中用于计算层间传递的信号。 **矩阵-矩阵乘法:** - **定义:**矩阵乘法是矩阵间的一种组合运算,涉及到行列间的点积计算。 - **应用场景:**广泛应用于机器学习模型中,如线性回归、神经网络等。 通过对上述知识点的学习,读者不仅可以获得坚实的数学基础,还能更好地理解和应用深度学习技术。这本教材通过丰富的实例和详尽的解释,为初学者提供了很好的学习路径。
2025-07-19 15:01:21 31.16MB
1
d2l_zh 《动手学深度学习》第二版PyTorch版本 运行环境:Google Colab
2023-02-13 17:19:31 3KB JupyterNotebook
1
动手学深度学习课程作业和答案
2023-01-17 12:28:09 928KB 深度学习 人工智能
李沐老师b站课程的笔记,
2023-01-05 17:30:21 5.65MB 深度学习
1
动手学深度学习(pytorch)中的d2lzh_pytorch资源,望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望望采纳!
2022-11-23 22:51:05 9KB d2lzh_pytorch
1
模型微调》文本情感分类文本情感分类文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。后续内容将从以下几个方面展开:文本情感分类数据
2022-10-29 12:43:45 34KB argmax 分类 分类数据
1
动手学深度学习(D2L深度学习) | 理解深度学习的最佳方法是学以致用。 本开源项目代表了我们的一种尝试:我们将教给读者概念,背景知识和代码;我们将在同一个地方分解剖析问题所需的批判性思维,解决问题所需的数学知识,以及实现解决方案所需的工程技能。 我们的目标是创造一个为实现以下目标的统一资源: 所有人在网上免费获取; 提供足够的技术深度,从而帮助读者实际成为深度学习应用科学家:既理解数学原理,又能够实现并不断改进方法; 包括可运行的代码,为读者展示如何在实际中解决问题。这样直接直接将数学公式对应成实际代码,而且可以修改代码,观察结果并及时获取经验; 允许我们和整个社区不断快速迭代内容,从而紧跟仍在高速发展的深度学习领域; 由包含有关技术细节问答的论坛作为补充,使大家可以相互相互答疑并交换经验。 将本书(中英文版)利用教材或参考书的大学 如果本书对你有帮助,请星级(★)本仓库或引用本书英文版: @book{zhang2020dive, title={Dive into Deep Learning}, author={Aston Zhang and Zachary C.
1
课程介绍 本课程面向希望更多的通过代码实践去学习深度学习原理的同学和在职人士。 《动手学深度学习》是2019年国内最受欢迎的人工智能学习教材之一,伯禹教育携手上海交通大学团队,以此书的知识架构为基础,沿用了其中的原理讲解文档,并将代码框架由MXNET迁移至PyTorch,还对这些优质的实践代码制作了讲解视频。其中部分PyTorch代码来自GitHub开源仓库:https://github.com/ShusenTang/Dive-into-DL-PyTorch。 通过这门课程的学习,你将可以对深度学习中常见的方法以及相关的应用有一个从原理到实践的全面了解。 本课程主要针对代码进行讲解,理论基础较
2022-10-23 15:41:10 45KB c OR 动手学
1
pytorch基本使用及深度学习基础知识、从头实现一些深度学习算法
2022-09-12 11:06:03 33.44MB 深度学习 机器学习 pytorch
1