主要介绍了MATLAB中的曲线拟合方法,涵盖多项式拟合、加权最小方差拟合及非线性曲线拟合。在多项式拟合中,函数polyfit()可通过最小二乘法找到合适多项式系数,不同阶次拟合效果不同,阶次最高不超length(x)-1。加权最小方差拟合根据数据准确度赋予不同加权值,更符合拟合初衷,文中还给出其原理及求解公式,并通过实例展示拟合结果。对于非线性曲线拟合,已知输入输出向量及函数关系但未知系数向量时,可利用lsqcurvefit函数求解,同时介绍了该函数多种调用格式,最后通过具体实例阐述其应用及结果。
2025-06-15 19:44:17 2KB matlab 曲线拟合
1
十种常见的滤波算法用LabVIEW来实现,一维数组输入输出接口已配置好,程序框图有对每种滤波算法进行说明。可直接用枚举变量选择对应滤波方法,分别是: 无滤波 限幅滤波法 中位值滤波法 算术平均滤波法 递推平均滤波法 中位值平均滤波法 限幅平均滤波法 一阶滞后滤波法 加权递推平均滤波法 消抖滤波法 限幅消抖滤波法 此外,本程序还有滤波前后的波形对比,可帮助您选择正确的滤波算法。
2025-05-12 16:36:18 52KB labview 虚拟仪器
1
标题中的"基于HMM的方法进行时间数据聚类的双加权集成",涉及的关键知识点包括时间数据聚类(temporal data clustering)、隐马尔可夫模型(Hidden Markov Model, HMM)、双加权集成(bi-weighted ensemble),以及模型选择(model selection)。 时间数据聚类是无监督的数据挖掘技术中的一种,旨在将未标记的数据集分成不同的组,称为簇(clusters),使得同一簇中的数据点应该是连贯或者同质的。文章提到了众多已开发用于时间数据挖掘任务的聚类算法,它们的一个共同趋势是需要解决初始化问题和自动模型选择问题。初始化问题可能是指在基于HMM的聚类技术中,由于不同的初始状态,可能导致聚类结果的差异性,而自动模型选择问题则可能指在处理时间序列数据时,需要确定最适合数据特点的聚类数量或者模型结构。 隐马尔可夫模型是一种统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。在时间序列分析、生物信息学、自然语言处理等领域有着广泛的应用。HMM通常被用于分析时间数据,因为它们能够很好地对时间序列数据中的序列性和随机性进行建模。 双加权集成是文章中提出的一种新方法,用于提升基于HMM的时间数据聚类技术。这种方法提出的双加权方案在检查每个分区以及在输入分区上优化共识函数的过程中,根据分区的重要性水平。文章中还提到了基于树的聚类算法和基于树状图的相似分区(DSPA),这种聚类算法可以优化最终的共识分区。 模型选择是指在多个候选模型中选择最符合数据特点的模型的过程。在聚类算法中,模型选择通常涉及到确定最合适的簇的数量、聚类算法的类型或者模型的参数配置。在时间数据聚类中,模型选择尤为重要,因为时间数据的序列特性要求模型能够捕捉数据随时间的动态变化。 双加权集成方法的核心在于它能够自动确定簇的数量,并且在各种时间数据集上表现出优异的聚类性能,包括合成数据集、时间序列基准数据集和现实世界中的运动轨迹数据集。这表明该方法在解决时间数据聚类问题时具备一定的通用性和优越性。 文章的背景介绍部分强调了聚类的重要性,并提出了当前聚类算法在处理时间数据时遇到的一些共同挑战,即如何自动选择最佳的模型和簇数量。为了解决这些问题,文章提出了双加权集成方法,这是一种新颖的技术,旨在改进现有的聚类集成技术。集成学习(ensemble learning)本身是一种机器学习范式,它构建并组合多个学习器来解决同一问题,并通过组合它们的预测来提高整体性能。在聚类领域中,集成学习被用来提升聚类结果的稳定性和准确性。通过考虑不同初始条件下HMM模型生成的多个分区,并使用双加权机制和基于树状图的相似分区技术对这些分区进行优化和整合,文章的方法能够实现更好的聚类效果。 文章提到了研究的历史背景,包括接收、修订和接受的日期,以及文章的关键词。这为读者提供了文章研究过程的视角,也强调了聚类、集成学习和模型选择是该研究的核心主题。通过研究这些领域的最新进展,文章试图为时间数据聚类的研究贡献新的理论和实践成果。
2025-04-13 19:31:03 3.01MB 研究论文
1
强化学习中样本的重要性加权转移 此存储库包含我们的强化学习中的重要性加权样本转移》的代码,该代码已在ICML 2018上接受。我们提供了一个小库,用于RL中的样本转移(名为TRLIB),包括重要性加权拟合Q的实现-迭代(IWFQI)算法[1]以及有关如何重现本文提出的实验的说明。 抽象的 我们考虑了从一组源任务中收集的强化学习(RL)中经验样本(即元组)的转移,以改善给定目标任务中的学习过程。 大多数相关方法都专注于选择最相关的源样本来解决目标任务,但随后使用所有已转移的样本,而无需再考虑任务模型之间的差异。 在本文中,我们提出了一种基于模型的技术,该技术可以自动估计每个源样本的相关性(重要性权重)以解决目标任务。 在所提出的方法中,所有样本都通过批处理RL算法转移并用于解决目标任务,但它们对学习过程的贡献与它们的重要性权重成正比。 通过扩展监督学习文献中提供的重要性加
1
基于加权加速度均方根值分析的汽车平顺性MATLAB代码实现:新国标下的计算方法与输出结果,基于Matlab代码的汽车平顺性分析:新国标下加权加速度均方根值计算方法及输出结果分析,加权加速度均方根值 matlab代码 汽车平顺性分析 新国标下的加权加速度均方根值计算 输入为加速度样本 输出加速度功率谱密度 以及加权加速度均方根 ,加权加速度; 均方根值; MATLAB代码; 汽车平顺性分析; 新国标计算; 输入样本; 输出功率谱密度; 加权加速度均方根值,新国标下汽车平顺性分析的加权加速度均方根值计算与Matlab代码实现
2025-04-02 09:57:38 1.07MB
1
【图像融合】基于matlab小波变换(加权平均法+局域能量+区域方差匹配)图像融合【含Matlab源码 1819期】.md
2024-11-30 17:05:13 9KB
1
双色球EXCEL全攻略6-9加权式旋转矩阵3+12中6保5.pdf
2024-10-28 16:34:25 62KB
1
1.包括广义互相关时延估计GCC几种加权方式(Roth加权、SCOT加权、PHAT加权、ML加权)的详细代码(MATLAB) 2.代码有很详细的注释,很有参考价值,每一种加权方法都有详细的代码 3.希望能帮助大家更好的理解广义互相关时延估计
2024-05-09 20:13:44 92KB matlab GCC 时延估计 Roth
1
别人当初花600块让我给写的马尔可夫预测代码,步骤详细,包教包会,你只要看完一遍,基本上就会加权马尔可夫预测了。
2024-03-27 21:14:58 913KB
1
建立了一个Sobolev空间上部分对称函数到加权Lp空间的嵌入定理,并给出这一定理对具临界增长非线性椭圆边值问题的应用。过去这类结论主要是关于Holder函数的,笔者将这一结论推广到连续函数。
1